This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | ||
| grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | grlimprclnbgr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 2 | clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 4 | grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 6 | grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ 𝐼 ) | |
| 8 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 10 | 7 9 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → ( { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 11 | 1 2 3 4 5 6 | grlimedgclnbgr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 12 | 10 11 | syl3an3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 13 | simpr1 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) | |
| 14 | simpr2 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) | |
| 15 | f1ofn | ⊢ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 → 𝑓 Fn 𝑁 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝑓 Fn 𝑁 ) |
| 17 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) |
| 20 | 2 | eleq2i | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 21 | 20 | biimpi | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 24 | 9 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 25 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 26 | 19 23 24 25 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 28 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 29 | 28 | clnbgrvtxel | ⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 30 | 27 29 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 31 | 30 1 | eleqtrrdi | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ 𝑁 ) |
| 32 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
| 33 | 32 | eleq1i | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 34 | 33 | biimpi | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 35 | 34 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 38 | 37 | olcd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) |
| 39 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph ) |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UPGraph ) |
| 42 | prid2g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
| 43 | 42 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 44 | 43 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 45 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 46 | 19 23 44 45 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 47 | 41 26 46 | 3jca | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 49 | 28 2 | clnbupgrel | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) ) |
| 50 | 48 49 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) ) |
| 51 | 38 50 | mpbird | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 52 | 51 1 | eleqtrrdi | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐵 ∈ 𝑁 ) |
| 53 | fnimapr | ⊢ ( ( 𝑓 Fn 𝑁 ∧ 𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑁 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) | |
| 54 | 16 31 52 53 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) |
| 55 | 54 | eqeq1d | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 56 | 55 | biimpd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 57 | 56 | a1d | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 58 | 57 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) ) |
| 59 | 58 | 3imp2 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) |
| 60 | 13 14 59 | 3jca | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 61 | 60 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 62 | 61 | 2eximdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 63 | 12 62 | mpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |