This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge E containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | ||
| grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | grlimedgclnbgr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 2 | clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 4 | grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 6 | grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 7 | simp1l | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐺 ∈ USPGraph ) | |
| 8 | simp1r | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐻 ∈ USPGraph ) | |
| 9 | simp2 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 10 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 12 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 13 | eqid | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 14 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ) ) | |
| 15 | 14 | cbvrabv | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑦 ∈ 𝐼 ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } |
| 16 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) | |
| 17 | 16 | cbvrabv | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } |
| 18 | 10 11 12 13 2 5 15 17 | usgrlimprop | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 19 | 7 8 9 18 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 20 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐺 ∈ UHGraph ) |
| 23 | 2 | eleq2i | ⊢ ( 𝐸 ∈ 𝐼 ↔ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 24 | 23 | biimpi | ⊢ ( 𝐸 ∈ 𝐼 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 27 | simp3r | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐴 ∈ 𝐸 ) | |
| 28 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐸 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 29 | 22 26 27 28 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 30 | eqidd | ⊢ ( 𝑣 = 𝐴 → 𝑓 = 𝑓 ) | |
| 31 | oveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝐴 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 33 | 32 | oveq2d | ⊢ ( 𝑣 = 𝐴 → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 34 | 30 31 33 | f1oeq123d | ⊢ ( 𝑣 = 𝐴 → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 35 | eqidd | ⊢ ( 𝑣 = 𝐴 → 𝑔 = 𝑔 ) | |
| 36 | 31 | sseq2d | ⊢ ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) ) ) |
| 37 | 36 | rabbidv | ⊢ ( 𝑣 = 𝐴 → { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 38 | 33 | sseq2d | ⊢ ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 39 | 38 | rabbidv | ⊢ ( 𝑣 = 𝐴 → { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 40 | 35 37 39 | f1oeq123d | ⊢ ( 𝑣 = 𝐴 → ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) |
| 41 | 37 | raleqdv | ⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) |
| 42 | 40 41 | anbi12d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 43 | 42 | exbidv | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 44 | 34 43 | anbi12d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 45 | 44 | exbidv | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 46 | 45 | rspcv | ⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 47 | 29 46 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 48 | eqid | ⊢ 𝑓 = 𝑓 | |
| 49 | id | ⊢ ( 𝑓 = 𝑓 → 𝑓 = 𝑓 ) | |
| 50 | 1 | a1i | ⊢ ( 𝑓 = 𝑓 → 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 51 | 4 | a1i | ⊢ ( 𝑓 = 𝑓 → 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 52 | 49 50 51 | f1oeq123d | ⊢ ( 𝑓 = 𝑓 → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 53 | 48 52 | ax-mp | ⊢ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 54 | 53 | biimpri | ⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 55 | 54 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 56 | 55 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 57 | eqid | ⊢ 𝑔 = 𝑔 | |
| 58 | id | ⊢ ( 𝑔 = 𝑔 → 𝑔 = 𝑔 ) | |
| 59 | 1 | sseq2i | ⊢ ( 𝑥 ⊆ 𝑁 ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 60 | 3 59 | rabbieq | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } |
| 61 | 60 | a1i | ⊢ ( 𝑔 = 𝑔 → 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 62 | 4 | sseq2i | ⊢ ( 𝑥 ⊆ 𝑀 ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 63 | 6 62 | rabbieq | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } |
| 64 | 63 | a1i | ⊢ ( 𝑔 = 𝑔 → 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 65 | 58 61 64 | f1oeq123d | ⊢ ( 𝑔 = 𝑔 → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) |
| 66 | 57 65 | ax-mp | ⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 67 | 66 | biimpri | ⊢ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 68 | 67 | adantr | ⊢ ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 69 | 68 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 70 | simp3l | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ 𝐼 ) | |
| 71 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝐴 ) = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 72 | eqid | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } | |
| 73 | 71 2 72 | clnbgrvtxedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 74 | 22 70 27 73 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 75 | imaeq2 | ⊢ ( 𝑒 = 𝐸 → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ 𝐸 ) ) | |
| 76 | fveq2 | ⊢ ( 𝑒 = 𝐸 → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ 𝐸 ) ) | |
| 77 | 75 76 | eqeq12d | ⊢ ( 𝑒 = 𝐸 → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 78 | 77 | rspcv | ⊢ ( 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 79 | 74 78 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 80 | 79 | adantld | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) |
| 83 | 56 69 82 | 3jca | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 84 | 83 | ex | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 85 | 84 | eximdv | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 86 | 85 | expimpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 87 | 86 | eximdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 88 | 47 87 | syld | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 89 | 88 | adantld | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 90 | 19 89 | mpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |