This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
||
| grlimedgclnbgr.j | |- J = ( Edg ` H ) |
||
| grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimprclnbgr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
|
| 5 | grlimedgclnbgr.j | |- J = ( Edg ` H ) |
|
| 6 | grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
|
| 7 | simp3 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> { A , B } e. I ) |
|
| 8 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> A e. { A , B } ) |
| 10 | 7 9 | jca | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> ( { A , B } e. I /\ A e. { A , B } ) ) |
| 11 | 1 2 3 4 5 6 | grlimedgclnbgr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( { A , B } e. I /\ A e. { A , B } ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) |
| 12 | 10 11 | syl3an3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) |
| 13 | simpr1 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) -> f : N -1-1-onto-> M ) |
|
| 14 | simpr2 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) -> g : K -1-1-onto-> L ) |
|
| 15 | f1ofn | |- ( f : N -1-1-onto-> M -> f Fn N ) |
|
| 16 | 15 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> f Fn N ) |
| 17 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 18 | 17 | adantr | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> G e. UHGraph ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> G e. UHGraph ) |
| 20 | 2 | eleq2i | |- ( { A , B } e. I <-> { A , B } e. ( Edg ` G ) ) |
| 21 | 20 | biimpi | |- ( { A , B } e. I -> { A , B } e. ( Edg ` G ) ) |
| 22 | 21 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> { A , B } e. ( Edg ` G ) ) |
| 23 | 22 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> { A , B } e. ( Edg ` G ) ) |
| 24 | 9 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> A e. { A , B } ) |
| 25 | uhgredgrnv | |- ( ( G e. UHGraph /\ { A , B } e. ( Edg ` G ) /\ A e. { A , B } ) -> A e. ( Vtx ` G ) ) |
|
| 26 | 19 23 24 25 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> A e. ( Vtx ` G ) ) |
| 27 | 26 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> A e. ( Vtx ` G ) ) |
| 28 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 29 | 28 | clnbgrvtxel | |- ( A e. ( Vtx ` G ) -> A e. ( G ClNeighbVtx A ) ) |
| 30 | 27 29 | syl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> A e. ( G ClNeighbVtx A ) ) |
| 31 | 30 1 | eleqtrrdi | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> A e. N ) |
| 32 | prcom | |- { A , B } = { B , A } |
|
| 33 | 32 | eleq1i | |- ( { A , B } e. I <-> { B , A } e. I ) |
| 34 | 33 | biimpi | |- ( { A , B } e. I -> { B , A } e. I ) |
| 35 | 34 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> { B , A } e. I ) |
| 36 | 35 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> { B , A } e. I ) |
| 37 | 36 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> { B , A } e. I ) |
| 38 | 37 | olcd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( B = A \/ { B , A } e. I ) ) |
| 39 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 40 | 39 | adantr | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> G e. UPGraph ) |
| 41 | 40 | 3ad2ant1 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> G e. UPGraph ) |
| 42 | prid2g | |- ( B e. W -> B e. { A , B } ) |
|
| 43 | 42 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> B e. { A , B } ) |
| 44 | 43 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> B e. { A , B } ) |
| 45 | uhgredgrnv | |- ( ( G e. UHGraph /\ { A , B } e. ( Edg ` G ) /\ B e. { A , B } ) -> B e. ( Vtx ` G ) ) |
|
| 46 | 19 23 44 45 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> B e. ( Vtx ` G ) ) |
| 47 | 41 26 46 | 3jca | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( G e. UPGraph /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
| 48 | 47 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( G e. UPGraph /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
| 49 | 28 2 | clnbupgrel | |- ( ( G e. UPGraph /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( B e. ( G ClNeighbVtx A ) <-> ( B = A \/ { B , A } e. I ) ) ) |
| 50 | 48 49 | syl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( B e. ( G ClNeighbVtx A ) <-> ( B = A \/ { B , A } e. I ) ) ) |
| 51 | 38 50 | mpbird | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> B e. ( G ClNeighbVtx A ) ) |
| 52 | 51 1 | eleqtrrdi | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> B e. N ) |
| 53 | fnimapr | |- ( ( f Fn N /\ A e. N /\ B e. N ) -> ( f " { A , B } ) = { ( f ` A ) , ( f ` B ) } ) |
|
| 54 | 16 31 52 53 | syl3anc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( f " { A , B } ) = { ( f ` A ) , ( f ` B ) } ) |
| 55 | 54 | eqeq1d | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( ( f " { A , B } ) = ( g ` { A , B } ) <-> { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |
| 56 | 55 | biimpd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( ( f " { A , B } ) = ( g ` { A , B } ) -> { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |
| 57 | 56 | a1d | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( g : K -1-1-onto-> L -> ( ( f " { A , B } ) = ( g ` { A , B } ) -> { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) ) |
| 58 | 57 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( f : N -1-1-onto-> M -> ( g : K -1-1-onto-> L -> ( ( f " { A , B } ) = ( g ` { A , B } ) -> { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) ) ) |
| 59 | 58 | 3imp2 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) -> { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) |
| 60 | 13 14 59 | 3jca | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |
| 61 | 60 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) ) |
| 62 | 61 | 2eximdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " { A , B } ) = ( g ` { A , B } ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) ) |
| 63 | 12 62 | mpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |