This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | clnbupgrel | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | clnbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝐾 ) = ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ 𝑁 ∈ ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ 𝑁 ∈ ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) ) |
| 6 | elun | ⊢ ( 𝑁 ∈ ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ↔ ( 𝑁 ∈ { 𝐾 } ∨ 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) | |
| 7 | preq2 | ⊢ ( 𝑛 = 𝑁 → { 𝐾 , 𝑛 } = { 𝐾 , 𝑁 } ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( { 𝐾 , 𝑛 } ∈ 𝐸 ↔ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ↔ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 10 | 9 | orbi2i | ⊢ ( ( 𝑁 ∈ { 𝐾 } ∨ 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ↔ ( 𝑁 ∈ { 𝐾 } ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 11 | 6 10 | bitri | ⊢ ( 𝑁 ∈ ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ↔ ( 𝑁 ∈ { 𝐾 } ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 12 | elsng | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∈ { 𝐾 } ↔ 𝑁 = 𝐾 ) ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∈ { 𝐾 } ↔ 𝑁 = 𝐾 ) ) |
| 14 | 13 | orbi1d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑁 ∈ { 𝐾 } ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ↔ ( 𝑁 = 𝐾 ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) ) |
| 15 | 11 14 | bitrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∈ ( { 𝐾 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ↔ ( 𝑁 = 𝐾 ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) ) |
| 16 | ibar | ⊢ ( 𝑁 ∈ 𝑉 → ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) | |
| 17 | prcom | ⊢ { 𝐾 , 𝑁 } = { 𝑁 , 𝐾 } | |
| 18 | 17 | eleq1i | ⊢ ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) |
| 19 | 16 18 | bitr3di | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| 20 | 19 | orbi2d | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑁 = 𝐾 ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑁 = 𝐾 ∨ ( 𝑁 ∈ 𝑉 ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 22 | 5 15 21 | 3bitrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |