This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgredgex.i | |- I = ( Edg ` G ) |
|
| grlimgredgex.e | |- E = ( Edg ` H ) |
||
| grlimgredgex.v | |- V = ( Vtx ` H ) |
||
| grlimgredgex.a | |- ( ph -> A e. X ) |
||
| grlimgredgex.b | |- ( ph -> B e. Y ) |
||
| grlimgredgex.p | |- ( ph -> { A , B } e. I ) |
||
| grlimgredgex.g | |- ( ph -> G e. USPGraph ) |
||
| grlimgredgex.h | |- ( ph -> H e. USPGraph ) |
||
| grlimgredgex.f | |- ( ph -> F e. ( G GraphLocIso H ) ) |
||
| Assertion | grlimgredgex | |- ( ph -> E. v e. V { ( F ` A ) , v } e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgredgex.i | |- I = ( Edg ` G ) |
|
| 2 | grlimgredgex.e | |- E = ( Edg ` H ) |
|
| 3 | grlimgredgex.v | |- V = ( Vtx ` H ) |
|
| 4 | grlimgredgex.a | |- ( ph -> A e. X ) |
|
| 5 | grlimgredgex.b | |- ( ph -> B e. Y ) |
|
| 6 | grlimgredgex.p | |- ( ph -> { A , B } e. I ) |
|
| 7 | grlimgredgex.g | |- ( ph -> G e. USPGraph ) |
|
| 8 | grlimgredgex.h | |- ( ph -> H e. USPGraph ) |
|
| 9 | grlimgredgex.f | |- ( ph -> F e. ( G GraphLocIso H ) ) |
|
| 10 | eqid | |- ( G ClNeighbVtx A ) = ( G ClNeighbVtx A ) |
|
| 11 | eqid | |- { x e. I | x C_ ( G ClNeighbVtx A ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } |
|
| 12 | eqid | |- ( H ClNeighbVtx ( F ` A ) ) = ( H ClNeighbVtx ( F ` A ) ) |
|
| 13 | eqid | |- { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } = { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } |
|
| 14 | 10 1 11 12 2 13 | grlimprclnbgrvtx | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. X /\ B e. Y /\ { A , B } e. I ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) ) |
| 15 | 7 8 9 4 5 6 14 | syl213anc | |- ( ph -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) ) |
| 16 | f1of | |- ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) -> f : ( G ClNeighbVtx A ) --> ( H ClNeighbVtx ( F ` A ) ) ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> f : ( G ClNeighbVtx A ) --> ( H ClNeighbVtx ( F ` A ) ) ) |
| 18 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 19 | 7 18 | syl | |- ( ph -> G e. UPGraph ) |
| 20 | 4 5 | jca | |- ( ph -> ( A e. X /\ B e. Y ) ) |
| 21 | 19 20 6 | 3jca | |- ( ph -> ( G e. UPGraph /\ ( A e. X /\ B e. Y ) /\ { A , B } e. I ) ) |
| 22 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 23 | 22 1 | upgrpredgv | |- ( ( G e. UPGraph /\ ( A e. X /\ B e. Y ) /\ { A , B } e. I ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
| 24 | simpr | |- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> B e. ( Vtx ` G ) ) |
|
| 25 | 21 23 24 | 3syl | |- ( ph -> B e. ( Vtx ` G ) ) |
| 26 | simpl | |- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> A e. ( Vtx ` G ) ) |
|
| 27 | 21 23 26 | 3syl | |- ( ph -> A e. ( Vtx ` G ) ) |
| 28 | 22 1 | predgclnbgrel | |- ( ( B e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) /\ { A , B } e. I ) -> B e. ( G ClNeighbVtx A ) ) |
| 29 | 25 27 6 28 | syl3anc | |- ( ph -> B e. ( G ClNeighbVtx A ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> B e. ( G ClNeighbVtx A ) ) |
| 31 | 17 30 | ffvelcdmd | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 32 | 3 | clnbgrisvtx | |- ( ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( f ` B ) e. V ) |
| 33 | 31 32 | syl | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` B ) e. V ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> ( f ` B ) e. V ) |
| 35 | preq2 | |- ( v = ( f ` B ) -> { ( F ` A ) , v } = { ( F ` A ) , ( f ` B ) } ) |
|
| 36 | 35 | eleq1d | |- ( v = ( f ` B ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` B ) } e. E ) ) |
| 37 | 36 | adantl | |- ( ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) /\ v = ( f ` B ) ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` B ) } e. E ) ) |
| 38 | sseq1 | |- ( x = { ( F ` A ) , ( f ` B ) } -> ( x C_ ( H ClNeighbVtx ( F ` A ) ) <-> { ( F ` A ) , ( f ` B ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
|
| 39 | 38 | elrab | |- ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } <-> ( { ( F ` A ) , ( f ` B ) } e. E /\ { ( F ` A ) , ( f ` B ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 40 | 39 | simplbi | |- ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> { ( F ` A ) , ( f ` B ) } e. E ) |
| 41 | 40 | adantl | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> { ( F ` A ) , ( f ` B ) } e. E ) |
| 42 | 34 37 41 | rspcedvd | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) |
| 43 | 42 | ex | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 44 | 22 | clnbgrvtxel | |- ( A e. ( Vtx ` G ) -> A e. ( G ClNeighbVtx A ) ) |
| 45 | 27 44 | syl | |- ( ph -> A e. ( G ClNeighbVtx A ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> A e. ( G ClNeighbVtx A ) ) |
| 47 | 17 46 | ffvelcdmd | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 48 | 3 | clnbgrisvtx | |- ( ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( f ` A ) e. V ) |
| 49 | 47 48 | syl | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` A ) e. V ) |
| 50 | 49 | adantr | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> ( f ` A ) e. V ) |
| 51 | preq2 | |- ( v = ( f ` A ) -> { ( F ` A ) , v } = { ( F ` A ) , ( f ` A ) } ) |
|
| 52 | 51 | eleq1d | |- ( v = ( f ` A ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` A ) } e. E ) ) |
| 53 | 52 | adantl | |- ( ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) /\ v = ( f ` A ) ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` A ) } e. E ) ) |
| 54 | sseq1 | |- ( x = { ( F ` A ) , ( f ` A ) } -> ( x C_ ( H ClNeighbVtx ( F ` A ) ) <-> { ( F ` A ) , ( f ` A ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
|
| 55 | 54 | elrab | |- ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } <-> ( { ( F ` A ) , ( f ` A ) } e. E /\ { ( F ` A ) , ( f ` A ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 56 | 55 | simplbi | |- ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> { ( F ` A ) , ( f ` A ) } e. E ) |
| 57 | 56 | adantl | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> { ( F ` A ) , ( f ` A ) } e. E ) |
| 58 | 50 53 57 | rspcedvd | |- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) |
| 59 | 58 | ex | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 60 | 43 59 | jaod | |- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 61 | 60 | expimpd | |- ( ph -> ( ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 62 | 61 | exlimdv | |- ( ph -> ( E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 63 | 15 62 | mpd | |- ( ph -> E. v e. V { ( F ` A ) , v } e. E ) |