This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem grlimgredgex

Description: Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025)

Ref Expression
Hypotheses grlimgredgex.i I = Edg G
grlimgredgex.e E = Edg H
grlimgredgex.v V = Vtx H
grlimgredgex.a φ A X
grlimgredgex.b φ B Y
grlimgredgex.p φ A B I
grlimgredgex.g φ G USHGraph
grlimgredgex.h φ H USHGraph
grlimgredgex.f φ F G GraphLocIso H
Assertion grlimgredgex φ v V F A v E

Proof

Step Hyp Ref Expression
1 grlimgredgex.i I = Edg G
2 grlimgredgex.e E = Edg H
3 grlimgredgex.v V = Vtx H
4 grlimgredgex.a φ A X
5 grlimgredgex.b φ B Y
6 grlimgredgex.p φ A B I
7 grlimgredgex.g φ G USHGraph
8 grlimgredgex.h φ H USHGraph
9 grlimgredgex.f φ F G GraphLocIso H
10 eqid G ClNeighbVtx A = G ClNeighbVtx A
11 eqid x I | x G ClNeighbVtx A = x I | x G ClNeighbVtx A
12 eqid H ClNeighbVtx F A = H ClNeighbVtx F A
13 eqid x E | x H ClNeighbVtx F A = x E | x H ClNeighbVtx F A
14 10 1 11 12 2 13 grlimprclnbgrvtx G USHGraph H USHGraph F G GraphLocIso H A X B Y A B I f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A
15 7 8 9 4 5 6 14 syl213anc φ f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A
16 f1of f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f : G ClNeighbVtx A H ClNeighbVtx F A
17 16 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f : G ClNeighbVtx A H ClNeighbVtx F A
18 uspgrupgr G USHGraph G UPGraph
19 7 18 syl φ G UPGraph
20 4 5 jca φ A X B Y
21 19 20 6 3jca φ G UPGraph A X B Y A B I
22 eqid Vtx G = Vtx G
23 22 1 upgrpredgv G UPGraph A X B Y A B I A Vtx G B Vtx G
24 simpr A Vtx G B Vtx G B Vtx G
25 21 23 24 3syl φ B Vtx G
26 simpl A Vtx G B Vtx G A Vtx G
27 21 23 26 3syl φ A Vtx G
28 22 1 predgclnbgrel B Vtx G A Vtx G A B I B G ClNeighbVtx A
29 25 27 6 28 syl3anc φ B G ClNeighbVtx A
30 29 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A B G ClNeighbVtx A
31 17 30 ffvelcdmd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f B H ClNeighbVtx F A
32 3 clnbgrisvtx f B H ClNeighbVtx F A f B V
33 31 32 syl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f B V
34 33 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A f B V
35 preq2 v = f B F A v = F A f B
36 35 eleq1d v = f B F A v E F A f B E
37 36 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v = f B F A v E F A f B E
38 sseq1 x = F A f B x H ClNeighbVtx F A F A f B H ClNeighbVtx F A
39 38 elrab F A f B x E | x H ClNeighbVtx F A F A f B E F A f B H ClNeighbVtx F A
40 39 simplbi F A f B x E | x H ClNeighbVtx F A F A f B E
41 40 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f B E
42 34 37 41 rspcedvd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v V F A v E
43 42 ex φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A v V F A v E
44 22 clnbgrvtxel A Vtx G A G ClNeighbVtx A
45 27 44 syl φ A G ClNeighbVtx A
46 45 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A A G ClNeighbVtx A
47 17 46 ffvelcdmd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f A H ClNeighbVtx F A
48 3 clnbgrisvtx f A H ClNeighbVtx F A f A V
49 47 48 syl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A f A V
50 49 adantr φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A f A V
51 preq2 v = f A F A v = F A f A
52 51 eleq1d v = f A F A v E F A f A E
53 52 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v = f A F A v E F A f A E
54 sseq1 x = F A f A x H ClNeighbVtx F A F A f A H ClNeighbVtx F A
55 54 elrab F A f A x E | x H ClNeighbVtx F A F A f A E F A f A H ClNeighbVtx F A
56 55 simplbi F A f A x E | x H ClNeighbVtx F A F A f A E
57 56 adantl φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A F A f A E
58 50 53 57 rspcedvd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
59 58 ex φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
60 43 59 jaod φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
61 60 expimpd φ f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
62 61 exlimdv φ f f : G ClNeighbVtx A 1-1 onto H ClNeighbVtx F A F A f B x E | x H ClNeighbVtx F A F A f A x E | x H ClNeighbVtx F A v V F A v E
63 15 62 mpd φ v V F A v E