This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlicref | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd | ⊢ ( 𝐺 ∈ UHGraph → ( Vtx ‘ 𝐺 ) ∈ V ) | |
| 2 | 1 | resiexd | ⊢ ( 𝐺 ∈ UHGraph → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 | clnbgrssvtx | ⊢ ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 ) |
| 5 | 4 | a1i | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 6 | 3 | isubgruhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph ) |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph ) |
| 8 | gricref | ⊢ ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝐺 ∈ UHGraph → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
| 11 | f1oi | ⊢ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) | |
| 12 | 10 11 | jctil | ⊢ ( 𝐺 ∈ UHGraph → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) |
| 13 | f1oeq1 | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) ) | |
| 14 | fveq1 | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝑓 ‘ 𝑣 ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) ) |
| 17 | 16 | breq2d | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) ) ) |
| 18 | fvresi | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) = 𝑣 ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) = ( 𝐺 ClNeighbVtx 𝑣 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
| 21 | 20 | breq2d | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) |
| 22 | 17 21 | sylan9bb | ⊢ ( ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) |
| 23 | 22 | ralbidva | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) |
| 24 | 13 23 | anbi12d | ⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) ) |
| 25 | 2 12 24 | spcedv | ⊢ ( 𝐺 ∈ UHGraph → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
| 26 | 3 3 | dfgrlic2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| 27 | 26 | anidms | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| 28 | 25 27 | mpbird | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺 ) |