This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlicref | |- ( G e. UHGraph -> G ~=lgr G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd | |- ( G e. UHGraph -> ( Vtx ` G ) e. _V ) |
|
| 2 | 1 | resiexd | |- ( G e. UHGraph -> ( _I |` ( Vtx ` G ) ) e. _V ) |
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 | clnbgrssvtx | |- ( G ClNeighbVtx v ) C_ ( Vtx ` G ) |
| 5 | 4 | a1i | |- ( v e. ( Vtx ` G ) -> ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) |
| 6 | 3 | isubgruhgr | |- ( ( G e. UHGraph /\ ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph ) |
| 7 | 5 6 | sylan2 | |- ( ( G e. UHGraph /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph ) |
| 8 | gricref | |- ( ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( G e. UHGraph /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
| 10 | 9 | ralrimiva | |- ( G e. UHGraph -> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
| 11 | f1oi | |- ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) |
|
| 12 | 10 11 | jctil | |- ( G e. UHGraph -> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
| 13 | f1oeq1 | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) <-> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) ) ) |
|
| 14 | fveq1 | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( f ` v ) = ( ( _I |` ( Vtx ` G ) ) ` v ) ) |
|
| 15 | 14 | oveq2d | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( G ClNeighbVtx ( f ` v ) ) = ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) |
| 16 | 15 | oveq2d | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) = ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) ) |
| 17 | 16 | breq2d | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) ) ) |
| 18 | fvresi | |- ( v e. ( Vtx ` G ) -> ( ( _I |` ( Vtx ` G ) ) ` v ) = v ) |
|
| 19 | 18 | oveq2d | |- ( v e. ( Vtx ` G ) -> ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) = ( G ClNeighbVtx v ) ) |
| 20 | 19 | oveq2d | |- ( v e. ( Vtx ` G ) -> ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) = ( G ISubGr ( G ClNeighbVtx v ) ) ) |
| 21 | 20 | breq2d | |- ( v e. ( Vtx ` G ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
| 22 | 17 21 | sylan9bb | |- ( ( f = ( _I |` ( Vtx ` G ) ) /\ v e. ( Vtx ` G ) ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
| 23 | 22 | ralbidva | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
| 24 | 13 23 | anbi12d | |- ( f = ( _I |` ( Vtx ` G ) ) -> ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) ) |
| 25 | 2 12 24 | spcedv | |- ( G e. UHGraph -> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) |
| 26 | 3 3 | dfgrlic2 | |- ( ( G e. UHGraph /\ G e. UHGraph ) -> ( G ~=lgr G <-> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| 27 | 26 | anidms | |- ( G e. UHGraph -> ( G ~=lgr G <-> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| 28 | 25 27 | mpbird | |- ( G e. UHGraph -> G ~=lgr G ) |