This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 29-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricref | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ≃𝑔𝑟 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimid | ⊢ ( 𝐺 ∈ UHGraph → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐺 ) ) | |
| 2 | brgrici | ⊢ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐺 ) → 𝐺 ≃𝑔𝑟 𝐺 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ≃𝑔𝑟 𝐺 ) |