This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two isomorphic graphs, a set of vertices is an edge in one graph iff its image by a graph isomorphism is an edge of the other graph. (Contributed by AV, 7-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimedg.v | |- V = ( Vtx ` G ) |
|
| grimedg.i | |- I = ( Edg ` G ) |
||
| grimedg.e | |- E = ( Edg ` H ) |
||
| Assertion | grimedg | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimedg.v | |- V = ( Vtx ` G ) |
|
| 2 | grimedg.i | |- I = ( Edg ` G ) |
|
| 3 | grimedg.e | |- E = ( Edg ` H ) |
|
| 4 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 7 | 1 4 5 6 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 8 | 2 | eleq2i | |- ( K e. I <-> K e. ( Edg ` G ) ) |
| 9 | 5 | uhgredgiedgb | |- ( G e. UHGraph -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 10 | 9 | ad2antll | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 11 | 8 10 | bitrid | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 12 | 2fveq3 | |- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
|
| 13 | fveq2 | |- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
|
| 14 | 13 | imaeq2d | |- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 16 | 15 | rspcv | |- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 17 | 16 | adantl | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 18 | 6 | uhgrfun | |- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> Fun ( iEdg ` H ) ) |
| 20 | f1of | |- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
|
| 21 | 20 | ad2antll | |- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 22 | simplr | |- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> k e. dom ( iEdg ` G ) ) |
|
| 23 | 21 22 | ffvelcdmd | |- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
| 24 | 6 | iedgedg | |- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 25 | 24 3 | eleqtrrdi | |- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) |
| 26 | 19 23 25 | syl2an2r | |- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) |
| 27 | eleq1 | |- ( ( F " ( ( iEdg ` G ) ` k ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. E <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) ) |
|
| 28 | 27 | eqcoms | |- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. E <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) ) |
| 29 | 26 28 | syl5ibrcom | |- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 30 | 29 | ex | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 31 | 30 | com23 | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 32 | 17 31 | syld | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 33 | 32 | com13 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 34 | 33 | impr | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 35 | 34 | impl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) |
| 36 | 35 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) |
| 37 | imaeq2 | |- ( K = ( ( iEdg ` G ) ` k ) -> ( F " K ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
|
| 38 | 37 | eleq1d | |- ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E <-> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 39 | 38 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. E <-> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 40 | 36 39 | mpbird | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F " K ) e. E ) |
| 41 | 1 5 | uhgrss | |- ( ( G e. UHGraph /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 42 | 41 | ex | |- ( G e. UHGraph -> ( k e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 43 | 42 | ad2antll | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( k e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 44 | 43 | imp | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 45 | 44 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 46 | sseq1 | |- ( K = ( ( iEdg ` G ) ` k ) -> ( K C_ V <-> ( ( iEdg ` G ) ` k ) C_ V ) ) |
|
| 47 | 46 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( K C_ V <-> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 48 | 45 47 | mpbird | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> K C_ V ) |
| 49 | 40 48 | jca | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. E /\ K C_ V ) ) |
| 50 | 49 | ex | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 51 | 50 | rexlimdva | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 52 | 11 51 | sylbid | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 53 | 3 | eleq2i | |- ( ( F " K ) e. E <-> ( F " K ) e. ( Edg ` H ) ) |
| 54 | 6 | uhgredgiedgb | |- ( H e. UHGraph -> ( ( F " K ) e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 55 | 54 | ad2antrl | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 56 | 53 55 | bitrid | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. E <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 57 | f1ofo | |- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
|
| 58 | 57 | adantr | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
| 59 | 58 | ad2antlr | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
| 60 | foelrn | |- ( ( j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> E. l e. dom ( iEdg ` G ) k = ( j ` l ) ) |
|
| 61 | 59 60 | sylan | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> E. l e. dom ( iEdg ` G ) k = ( j ` l ) ) |
| 62 | 2fveq3 | |- ( i = l -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) |
|
| 63 | fveq2 | |- ( i = l -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` l ) ) |
|
| 64 | 63 | imaeq2d | |- ( i = l -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) |
| 65 | 62 64 | eqeq12d | |- ( i = l -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 66 | 65 | rspcv | |- ( l e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 67 | 66 | adantl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 68 | fveq2 | |- ( k = ( j ` l ) -> ( ( iEdg ` H ) ` k ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) |
|
| 69 | 68 | eqeq2d | |- ( k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) <-> ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) ) |
| 70 | 69 | ad2antll | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) <-> ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) ) |
| 71 | simpl | |- ( ( H e. UHGraph /\ G e. UHGraph ) -> H e. UHGraph ) |
|
| 72 | 71 | ad2antrl | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> H e. UHGraph ) |
| 73 | simplrr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> k e. dom ( iEdg ` H ) ) |
|
| 74 | eleq1 | |- ( k = ( j ` l ) -> ( k e. dom ( iEdg ` H ) <-> ( j ` l ) e. dom ( iEdg ` H ) ) ) |
|
| 75 | 74 | ad2antll | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( k e. dom ( iEdg ` H ) <-> ( j ` l ) e. dom ( iEdg ` H ) ) ) |
| 76 | 73 75 | mpbid | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( j ` l ) e. dom ( iEdg ` H ) ) |
| 77 | 4 6 | uhgrss | |- ( ( H e. UHGraph /\ ( j ` l ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 78 | 72 76 77 | syl2an2r | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 79 | 78 | ad2antrr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 80 | sseq1 | |- ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) ) |
|
| 81 | 80 | adantl | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) ) |
| 82 | 79 81 | mpbird | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( F " K ) C_ ( Vtx ` H ) ) |
| 83 | eqeq2 | |- ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) <-> ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
|
| 84 | 83 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) <-> ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 85 | f1of1 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V -1-1-> ( Vtx ` H ) ) |
|
| 86 | 85 | ad3antrrr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 87 | 86 | ad3antrrr | |- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 88 | simplr | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> G e. UHGraph ) |
|
| 89 | 88 | adantl | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> G e. UHGraph ) |
| 90 | simpl | |- ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> l e. dom ( iEdg ` G ) ) |
|
| 91 | 1 5 | uhgrss | |- ( ( G e. UHGraph /\ l e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 92 | 89 90 91 | syl2an | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 93 | 92 | ad2antrr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 94 | 93 | anim1ci | |- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( K C_ V /\ ( ( iEdg ` G ) ` l ) C_ V ) ) |
| 95 | f1imaeq | |- ( ( F : V -1-1-> ( Vtx ` H ) /\ ( K C_ V /\ ( ( iEdg ` G ) ` l ) C_ V ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) <-> K = ( ( iEdg ` G ) ` l ) ) ) |
|
| 96 | 87 94 95 | syl2anc | |- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) <-> K = ( ( iEdg ` G ) ` l ) ) ) |
| 97 | 5 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 98 | 97 | ad2antlr | |- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> Fun ( iEdg ` G ) ) |
| 99 | 98 | adantl | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> Fun ( iEdg ` G ) ) |
| 100 | 5 | iedgedg | |- ( ( Fun ( iEdg ` G ) /\ l e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` l ) e. ( Edg ` G ) ) |
| 101 | 99 90 100 | syl2an | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) e. ( Edg ` G ) ) |
| 102 | 101 2 | eleqtrrdi | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) e. I ) |
| 103 | eleq1 | |- ( K = ( ( iEdg ` G ) ` l ) -> ( K e. I <-> ( ( iEdg ` G ) ` l ) e. I ) ) |
|
| 104 | 102 103 | syl5ibrcom | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( K = ( ( iEdg ` G ) ` l ) -> K e. I ) ) |
| 105 | 104 | ad3antrrr | |- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( K = ( ( iEdg ` G ) ` l ) -> K e. I ) ) |
| 106 | 96 105 | sylbid | |- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> K e. I ) ) |
| 107 | 106 | ex | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( K C_ V -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> K e. I ) ) ) |
| 108 | 107 | com23 | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) |
| 109 | 108 | ex | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 110 | 109 | com23 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) ) |
| 111 | 84 110 | sylbid | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) ) |
| 112 | 111 | imp | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) |
| 113 | 82 112 | mpd | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( K C_ V -> K e. I ) ) |
| 114 | 113 | exp31 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 115 | 114 | com23 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 116 | 70 115 | sylbid | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 117 | 116 | exp31 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 118 | 117 | com23 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 119 | 118 | com24 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 120 | 119 | 3imp | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 121 | 120 | expdimp | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( k = ( j ` l ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 122 | 67 121 | syl5d | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 123 | 122 | rexlimdva | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 124 | 123 | 3exp | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 125 | 124 | com25 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 126 | 125 | impr | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) ) |
| 127 | 126 | impl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) |
| 128 | 61 127 | mpd | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) |
| 129 | 128 | rexlimdva | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) |
| 130 | 56 129 | sylbid | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. E -> ( K C_ V -> K e. I ) ) ) |
| 131 | 130 | impd | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( ( F " K ) e. E /\ K C_ V ) -> K e. I ) ) |
| 132 | 52 131 | impbid | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 133 | 132 | exp31 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 134 | 133 | exlimdv | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 135 | 134 | imp | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) |
| 136 | 7 135 | syl | |- ( F e. ( G GraphIso H ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) |
| 137 | 136 | expd | |- ( F e. ( G GraphIso H ) -> ( H e. UHGraph -> ( G e. UHGraph -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 138 | 137 | com13 | |- ( G e. UHGraph -> ( H e. UHGraph -> ( F e. ( G GraphIso H ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 139 | 138 | 3imp | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |