This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmplusg.p | |- .+ = ( +g ` N ) |
|
| Assertion | ghmplusg | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmplusg.p | |- .+ = ( +g ` N ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 4 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 5 | ghmgrp1 | |- ( G e. ( M GrpHom N ) -> M e. Grp ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> M e. Grp ) |
| 7 | ghmgrp2 | |- ( G e. ( M GrpHom N ) -> N e. Grp ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> N e. Grp ) |
| 9 | 3 1 | grpcl | |- ( ( N e. Grp /\ x e. ( Base ` N ) /\ y e. ( Base ` N ) ) -> ( x .+ y ) e. ( Base ` N ) ) |
| 10 | 9 | 3expb | |- ( ( N e. Grp /\ ( x e. ( Base ` N ) /\ y e. ( Base ` N ) ) ) -> ( x .+ y ) e. ( Base ` N ) ) |
| 11 | 8 10 | sylan | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` N ) /\ y e. ( Base ` N ) ) ) -> ( x .+ y ) e. ( Base ` N ) ) |
| 12 | 2 3 | ghmf | |- ( F e. ( M GrpHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 14 | 2 3 | ghmf | |- ( G e. ( M GrpHom N ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 15 | 14 | 3ad2ant3 | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 16 | fvexd | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( Base ` M ) e. _V ) |
|
| 17 | inidm | |- ( ( Base ` M ) i^i ( Base ` M ) ) = ( Base ` M ) |
|
| 18 | 11 13 15 16 16 17 | off | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( F oF .+ G ) : ( Base ` M ) --> ( Base ` N ) ) |
| 19 | 2 4 1 | ghmlin | |- ( ( F e. ( M GrpHom N ) /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( F ` ( x ( +g ` M ) y ) ) = ( ( F ` x ) .+ ( F ` y ) ) ) |
| 20 | 19 | 3expb | |- ( ( F e. ( M GrpHom N ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( x ( +g ` M ) y ) ) = ( ( F ` x ) .+ ( F ` y ) ) ) |
| 21 | 20 | 3ad2antl2 | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( x ( +g ` M ) y ) ) = ( ( F ` x ) .+ ( F ` y ) ) ) |
| 22 | 2 4 1 | ghmlin | |- ( ( G e. ( M GrpHom N ) /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( G ` ( x ( +g ` M ) y ) ) = ( ( G ` x ) .+ ( G ` y ) ) ) |
| 23 | 22 | 3expb | |- ( ( G e. ( M GrpHom N ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( G ` ( x ( +g ` M ) y ) ) = ( ( G ` x ) .+ ( G ` y ) ) ) |
| 24 | 23 | 3ad2antl3 | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( G ` ( x ( +g ` M ) y ) ) = ( ( G ` x ) .+ ( G ` y ) ) ) |
| 25 | 21 24 | oveq12d | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( +g ` M ) y ) ) .+ ( G ` ( x ( +g ` M ) y ) ) ) = ( ( ( F ` x ) .+ ( F ` y ) ) .+ ( ( G ` x ) .+ ( G ` y ) ) ) ) |
| 26 | simpl1 | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> N e. Abel ) |
|
| 27 | ablcmn | |- ( N e. Abel -> N e. CMnd ) |
|
| 28 | 26 27 | syl | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> N e. CMnd ) |
| 29 | 13 | ffvelcdmda | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ x e. ( Base ` M ) ) -> ( F ` x ) e. ( Base ` N ) ) |
| 30 | 29 | adantrr | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( F ` x ) e. ( Base ` N ) ) |
| 31 | 13 | ffvelcdmda | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ y e. ( Base ` M ) ) -> ( F ` y ) e. ( Base ` N ) ) |
| 32 | 31 | adantrl | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( F ` y ) e. ( Base ` N ) ) |
| 33 | 15 | ffvelcdmda | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ x e. ( Base ` M ) ) -> ( G ` x ) e. ( Base ` N ) ) |
| 34 | 33 | adantrr | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( G ` x ) e. ( Base ` N ) ) |
| 35 | 15 | ffvelcdmda | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ y e. ( Base ` M ) ) -> ( G ` y ) e. ( Base ` N ) ) |
| 36 | 35 | adantrl | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( G ` y ) e. ( Base ` N ) ) |
| 37 | 3 1 | cmn4 | |- ( ( N e. CMnd /\ ( ( F ` x ) e. ( Base ` N ) /\ ( F ` y ) e. ( Base ` N ) ) /\ ( ( G ` x ) e. ( Base ` N ) /\ ( G ` y ) e. ( Base ` N ) ) ) -> ( ( ( F ` x ) .+ ( F ` y ) ) .+ ( ( G ` x ) .+ ( G ` y ) ) ) = ( ( ( F ` x ) .+ ( G ` x ) ) .+ ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 38 | 28 30 32 34 36 37 | syl122anc | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( ( F ` x ) .+ ( F ` y ) ) .+ ( ( G ` x ) .+ ( G ` y ) ) ) = ( ( ( F ` x ) .+ ( G ` x ) ) .+ ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 39 | 25 38 | eqtrd | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( +g ` M ) y ) ) .+ ( G ` ( x ( +g ` M ) y ) ) ) = ( ( ( F ` x ) .+ ( G ` x ) ) .+ ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 40 | 13 | ffnd | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> F Fn ( Base ` M ) ) |
| 41 | 40 | adantr | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> F Fn ( Base ` M ) ) |
| 42 | 15 | ffnd | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> G Fn ( Base ` M ) ) |
| 43 | 42 | adantr | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> G Fn ( Base ` M ) ) |
| 44 | fvexd | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( Base ` M ) e. _V ) |
|
| 45 | 2 4 | grpcl | |- ( ( M e. Grp /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) e. ( Base ` M ) ) |
| 46 | 45 | 3expb | |- ( ( M e. Grp /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( x ( +g ` M ) y ) e. ( Base ` M ) ) |
| 47 | 6 46 | sylan | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( x ( +g ` M ) y ) e. ( Base ` M ) ) |
| 48 | fnfvof | |- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ ( x ( +g ` M ) y ) e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( +g ` M ) y ) ) = ( ( F ` ( x ( +g ` M ) y ) ) .+ ( G ` ( x ( +g ` M ) y ) ) ) ) |
|
| 49 | 41 43 44 47 48 | syl22anc | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( +g ` M ) y ) ) = ( ( F ` ( x ( +g ` M ) y ) ) .+ ( G ` ( x ( +g ` M ) y ) ) ) ) |
| 50 | simprl | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` M ) ) |
|
| 51 | fnfvof | |- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ x e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` x ) = ( ( F ` x ) .+ ( G ` x ) ) ) |
|
| 52 | 41 43 44 50 51 | syl22anc | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` x ) = ( ( F ` x ) .+ ( G ` x ) ) ) |
| 53 | simprr | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> y e. ( Base ` M ) ) |
|
| 54 | fnfvof | |- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
|
| 55 | 41 43 44 53 54 | syl22anc | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
| 56 | 52 55 | oveq12d | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( ( F oF .+ G ) ` x ) .+ ( ( F oF .+ G ) ` y ) ) = ( ( ( F ` x ) .+ ( G ` x ) ) .+ ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 57 | 39 49 56 | 3eqtr4d | |- ( ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( +g ` M ) y ) ) = ( ( ( F oF .+ G ) ` x ) .+ ( ( F oF .+ G ) ` y ) ) ) |
| 58 | 2 3 4 1 6 8 18 57 | isghmd | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |