This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | ||
| ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | ||
| ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| ghmgrp.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| Assertion | ghmgrp | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 2 | ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | |
| 4 | ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | |
| 6 | ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 7 | ghmgrp.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 8 | 7 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 9 | 1 2 3 4 5 6 8 | mhmmnd | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 10 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 13 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Grp ) |
| 14 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) | |
| 15 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 16 | 2 15 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
| 17 | 13 14 16 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
| 18 | 12 17 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝑌 ) |
| 19 | 1 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | 7 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) | |
| 22 | 19 20 21 | mhmlem | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
| 23 | 22 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
| 24 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 25 | 2 4 24 15 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 27 | 13 14 26 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 28 | 1 2 3 4 5 6 8 24 | mhmid | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 30 | 27 29 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 0g ‘ 𝐻 ) ) |
| 31 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 32 | 31 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) ) |
| 33 | 23 30 32 | 3eqtr3rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
| 34 | oveq1 | ⊢ ( 𝑓 = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑓 ⨣ 𝑎 ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) ) | |
| 35 | 34 | eqeq1d | ⊢ ( 𝑓 = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ↔ ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) ) |
| 36 | 35 | rspcev | ⊢ ( ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝑌 ∧ ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
| 37 | 18 33 36 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
| 38 | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 39 | 6 38 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
| 40 | 37 39 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
| 42 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 43 | 3 5 42 | isgrp | ⊢ ( 𝐻 ∈ Grp ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑎 ∈ 𝑌 ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) ) |
| 44 | 9 41 43 | sylanbrc | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) |