This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| ghmgrp.x | |- X = ( Base ` G ) |
||
| ghmgrp.y | |- Y = ( Base ` H ) |
||
| ghmgrp.p | |- .+ = ( +g ` G ) |
||
| ghmgrp.q | |- .+^ = ( +g ` H ) |
||
| ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
||
| ghmgrp.3 | |- ( ph -> G e. Grp ) |
||
| Assertion | ghmgrp | |- ( ph -> H e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 2 | ghmgrp.x | |- X = ( Base ` G ) |
|
| 3 | ghmgrp.y | |- Y = ( Base ` H ) |
|
| 4 | ghmgrp.p | |- .+ = ( +g ` G ) |
|
| 5 | ghmgrp.q | |- .+^ = ( +g ` H ) |
|
| 6 | ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
|
| 7 | ghmgrp.3 | |- ( ph -> G e. Grp ) |
|
| 8 | 7 | grpmndd | |- ( ph -> G e. Mnd ) |
| 9 | 1 2 3 4 5 6 8 | mhmmnd | |- ( ph -> H e. Mnd ) |
| 10 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 11 | 6 10 | syl | |- ( ph -> F : X --> Y ) |
| 12 | 11 | ad3antrrr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> F : X --> Y ) |
| 13 | 7 | ad3antrrr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> G e. Grp ) |
| 14 | simplr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> i e. X ) |
|
| 15 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 16 | 2 15 | grpinvcl | |- ( ( G e. Grp /\ i e. X ) -> ( ( invg ` G ) ` i ) e. X ) |
| 17 | 13 14 16 | syl2anc | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( invg ` G ) ` i ) e. X ) |
| 18 | 12 17 | ffvelcdmd | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( invg ` G ) ` i ) ) e. Y ) |
| 19 | 1 | 3adant1r | |- ( ( ( ph /\ i e. X ) /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 20 | 7 16 | sylan | |- ( ( ph /\ i e. X ) -> ( ( invg ` G ) ` i ) e. X ) |
| 21 | simpr | |- ( ( ph /\ i e. X ) -> i e. X ) |
|
| 22 | 19 20 21 | mhmlem | |- ( ( ph /\ i e. X ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) ) |
| 23 | 22 | ad4ant13 | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) ) |
| 24 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 25 | 2 4 24 15 | grplinv | |- ( ( G e. Grp /\ i e. X ) -> ( ( ( invg ` G ) ` i ) .+ i ) = ( 0g ` G ) ) |
| 26 | 25 | fveq2d | |- ( ( G e. Grp /\ i e. X ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( F ` ( 0g ` G ) ) ) |
| 27 | 13 14 26 | syl2anc | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( F ` ( 0g ` G ) ) ) |
| 28 | 1 2 3 4 5 6 8 24 | mhmid | |- ( ph -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 29 | 28 | ad3antrrr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 30 | 27 29 | eqtrd | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( 0g ` H ) ) |
| 31 | simpr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` i ) = a ) |
|
| 32 | 31 | oveq2d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) ) |
| 33 | 23 30 32 | 3eqtr3rd | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) |
| 34 | oveq1 | |- ( f = ( F ` ( ( invg ` G ) ` i ) ) -> ( f .+^ a ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) ) |
|
| 35 | 34 | eqeq1d | |- ( f = ( F ` ( ( invg ` G ) ` i ) ) -> ( ( f .+^ a ) = ( 0g ` H ) <-> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) ) |
| 36 | 35 | rspcev | |- ( ( ( F ` ( ( invg ` G ) ` i ) ) e. Y /\ ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 37 | 18 33 36 | syl2anc | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 38 | foelcdmi | |- ( ( F : X -onto-> Y /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
|
| 39 | 6 38 | sylan | |- ( ( ph /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
| 40 | 37 39 | r19.29a | |- ( ( ph /\ a e. Y ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. a e. Y E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 42 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 43 | 3 5 42 | isgrp | |- ( H e. Grp <-> ( H e. Mnd /\ A. a e. Y E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) ) |
| 44 | 9 41 43 | sylanbrc | |- ( ph -> H e. Grp ) |