This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnnp1.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulg2 | ⊢ ( 𝑋 ∈ 𝐵 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnnp1.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 5 | 4 | oveq1i | ⊢ ( 2 · 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) |
| 6 | 1nn | ⊢ 1 ∈ ℕ | |
| 7 | 1 2 3 | mulgnnp1 | ⊢ ( ( 1 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 8 | 6 7 | mpan | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 9 | 5 8 | eqtrid | ⊢ ( 𝑋 ∈ 𝐵 → ( 2 · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 10 | 1 2 | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 1 · 𝑋 ) + 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝑋 ∈ 𝐵 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |