This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer A is equal to its gcd with an integer B if and only if A divides B . Generalization of gcdeq . (Contributed by AV, 1-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdzeq | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 𝐴 ↔ 𝐴 ∥ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 2 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 4 | 3 | simprd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 5 | breq1 | ⊢ ( ( 𝐴 gcd 𝐵 ) = 𝐴 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ 𝐴 ∥ 𝐵 ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 𝐴 → 𝐴 ∥ 𝐵 ) ) |
| 7 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 8 | iddvds | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ 𝐴 ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 11 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 12 | simpl | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐴 = 0 ) | |
| 13 | 12 | necon3ai | ⊢ ( 𝐴 ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝐴 ∈ ℕ → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 16 | dvdslegcd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ≤ ( 𝐴 gcd 𝐵 ) ) ) | |
| 17 | 7 7 10 15 16 | syl31anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 18 | 9 17 | mpand | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 → 𝐴 ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 19 | 3 | simpld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 20 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 21 | 1 20 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 22 | 21 | nn0zd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 23 | simpl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℕ ) | |
| 24 | dvdsle | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( 𝐴 gcd 𝐵 ) ≤ 𝐴 ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( 𝐴 gcd 𝐵 ) ≤ 𝐴 ) ) |
| 26 | 19 25 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ≤ 𝐴 ) |
| 27 | 18 26 | jctild | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐴 gcd 𝐵 ) ) ) ) |
| 28 | 21 | nn0red | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
| 29 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 31 | 28 30 | letri3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 𝐴 ↔ ( ( 𝐴 gcd 𝐵 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐴 gcd 𝐵 ) ) ) ) |
| 32 | 27 31 | sylibrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 gcd 𝐵 ) = 𝐴 ) ) |
| 33 | 6 32 | impbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 𝐴 ↔ 𝐴 ∥ 𝐵 ) ) |