This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdaddm . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdaddmlem.1 | ⊢ 𝐾 ∈ ℤ | |
| gcdaddmlem.2 | ⊢ 𝑀 ∈ ℤ | ||
| gcdaddmlem.3 | ⊢ 𝑁 ∈ ℤ | ||
| Assertion | gcdaddmlem | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdaddmlem.1 | ⊢ 𝐾 ∈ ℤ | |
| 2 | gcdaddmlem.2 | ⊢ 𝑀 ∈ ℤ | |
| 3 | gcdaddmlem.3 | ⊢ 𝑁 ∈ ℤ | |
| 4 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 6 | 5 | simpli | ⊢ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 |
| 7 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 8 | 2 3 7 | mp2an | ⊢ ( 𝑀 gcd 𝑁 ) ∈ ℕ0 |
| 9 | 8 | nn0zi | ⊢ ( 𝑀 gcd 𝑁 ) ∈ ℤ |
| 10 | 1z | ⊢ 1 ∈ ℤ | |
| 11 | dvds2ln | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + ( 1 · 𝑁 ) ) ) ) | |
| 12 | 1 10 11 | mpanl12 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + ( 1 · 𝑁 ) ) ) ) |
| 13 | 9 2 3 12 | mp3an | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + ( 1 · 𝑁 ) ) ) |
| 14 | 5 13 | ax-mp | ⊢ ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + ( 1 · 𝑁 ) ) |
| 15 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 16 | 3 15 | ax-mp | ⊢ 𝑁 ∈ ℂ |
| 17 | 16 | mullidi | ⊢ ( 1 · 𝑁 ) = 𝑁 |
| 18 | 17 | oveq2i | ⊢ ( ( 𝐾 · 𝑀 ) + ( 1 · 𝑁 ) ) = ( ( 𝐾 · 𝑀 ) + 𝑁 ) |
| 19 | 14 18 | breqtri | ⊢ ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) |
| 20 | zmulcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 · 𝑀 ) ∈ ℤ ) | |
| 21 | 1 2 20 | mp2an | ⊢ ( 𝐾 · 𝑀 ) ∈ ℤ |
| 22 | zaddcl | ⊢ ( ( ( 𝐾 · 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) | |
| 23 | 21 3 22 | mp2an | ⊢ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ |
| 24 | dvdslegcd | ⊢ ( ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) | |
| 25 | 24 | ex | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) ) |
| 26 | 9 2 23 25 | mp3an | ⊢ ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) |
| 27 | 6 19 26 | mp2ani | ⊢ ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 28 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) → ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) | |
| 29 | 2 23 28 | mp2an | ⊢ ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| 30 | 29 | simpli | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 |
| 31 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℕ0 ) | |
| 32 | 2 23 31 | mp2an | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℕ0 |
| 33 | 32 | nn0zi | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℤ |
| 34 | znegcl | ⊢ ( 𝐾 ∈ ℤ → - 𝐾 ∈ ℤ ) | |
| 35 | 1 34 | ax-mp | ⊢ - 𝐾 ∈ ℤ |
| 36 | dvds2ln | ⊢ ( ( ( - 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) ) → ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) ) | |
| 37 | 35 10 36 | mpanl12 | ⊢ ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ ) → ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) ) |
| 38 | 33 2 23 37 | mp3an | ⊢ ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) ) |
| 39 | 29 38 | ax-mp | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 40 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 41 | 1 40 | ax-mp | ⊢ 𝐾 ∈ ℂ |
| 42 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 43 | 2 42 | ax-mp | ⊢ 𝑀 ∈ ℂ |
| 44 | 41 43 | mulneg1i | ⊢ ( - 𝐾 · 𝑀 ) = - ( 𝐾 · 𝑀 ) |
| 45 | zcn | ⊢ ( ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℤ → ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℂ ) | |
| 46 | 23 45 | ax-mp | ⊢ ( ( 𝐾 · 𝑀 ) + 𝑁 ) ∈ ℂ |
| 47 | 46 | mullidi | ⊢ ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = ( ( 𝐾 · 𝑀 ) + 𝑁 ) |
| 48 | 44 47 | oveq12i | ⊢ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) = ( - ( 𝐾 · 𝑀 ) + ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| 49 | 41 43 | mulcli | ⊢ ( 𝐾 · 𝑀 ) ∈ ℂ |
| 50 | 49 | negcli | ⊢ - ( 𝐾 · 𝑀 ) ∈ ℂ |
| 51 | 49 | negidi | ⊢ ( ( 𝐾 · 𝑀 ) + - ( 𝐾 · 𝑀 ) ) = 0 |
| 52 | 49 50 51 | addcomli | ⊢ ( - ( 𝐾 · 𝑀 ) + ( 𝐾 · 𝑀 ) ) = 0 |
| 53 | 52 | oveq1i | ⊢ ( ( - ( 𝐾 · 𝑀 ) + ( 𝐾 · 𝑀 ) ) + 𝑁 ) = ( 0 + 𝑁 ) |
| 54 | 50 49 16 | addassi | ⊢ ( ( - ( 𝐾 · 𝑀 ) + ( 𝐾 · 𝑀 ) ) + 𝑁 ) = ( - ( 𝐾 · 𝑀 ) + ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| 55 | 16 | addlidi | ⊢ ( 0 + 𝑁 ) = 𝑁 |
| 56 | 53 54 55 | 3eqtr3i | ⊢ ( - ( 𝐾 · 𝑀 ) + ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = 𝑁 |
| 57 | 48 56 | eqtri | ⊢ ( ( - 𝐾 · 𝑀 ) + ( 1 · ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) = 𝑁 |
| 58 | 39 57 | breqtri | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑁 |
| 59 | dvdslegcd | ⊢ ( ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑁 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) ) | |
| 60 | 59 | ex | ⊢ ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑁 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 61 | 33 2 3 60 | mp3an | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑀 ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∥ 𝑁 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 62 | 30 58 61 | mp2ani | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) |
| 63 | 27 62 | anim12i | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 64 | 9 | zrei | ⊢ ( 𝑀 gcd 𝑁 ) ∈ ℝ |
| 65 | 33 | zrei | ⊢ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∈ ℝ |
| 66 | 64 65 | letri3i | ⊢ ( ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ↔ ( ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ∧ ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 67 | 63 66 | sylibr | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 68 | pm4.57 | ⊢ ( ¬ ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ↔ ( ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∨ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) | |
| 69 | oveq2 | ⊢ ( 𝑀 = 0 → ( 𝐾 · 𝑀 ) = ( 𝐾 · 0 ) ) | |
| 70 | 41 | mul01i | ⊢ ( 𝐾 · 0 ) = 0 |
| 71 | 69 70 | eqtrdi | ⊢ ( 𝑀 = 0 → ( 𝐾 · 𝑀 ) = 0 ) |
| 72 | 71 | oveq1d | ⊢ ( 𝑀 = 0 → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = ( 0 + 𝑁 ) ) |
| 73 | 72 55 | eqtrdi | ⊢ ( 𝑀 = 0 → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 𝑁 ) |
| 74 | 73 | eqeq1d | ⊢ ( 𝑀 = 0 → ( ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) |
| 75 | 74 | pm5.32i | ⊢ ( ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ↔ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) |
| 76 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd 𝑁 ) = ( 0 gcd 0 ) ) | |
| 77 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = ( 0 gcd 0 ) ) | |
| 78 | 75 77 | sylbir | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = ( 0 gcd 0 ) ) |
| 79 | 76 78 | eqtr4d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 80 | 75 79 | sylbi | ⊢ ( ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 81 | 80 79 | jaoi | ⊢ ( ( ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∨ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 82 | 68 81 | sylbi | ⊢ ( ¬ ( ¬ ( 𝑀 = 0 ∧ ( ( 𝐾 · 𝑀 ) + 𝑁 ) = 0 ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 83 | 67 82 | pm2.61i | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |