This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdaddm . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdaddmlem.1 | |- K e. ZZ |
|
| gcdaddmlem.2 | |- M e. ZZ |
||
| gcdaddmlem.3 | |- N e. ZZ |
||
| Assertion | gcdaddmlem | |- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdaddmlem.1 | |- K e. ZZ |
|
| 2 | gcdaddmlem.2 | |- M e. ZZ |
|
| 3 | gcdaddmlem.3 | |- N e. ZZ |
|
| 4 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 5 | 2 3 4 | mp2an | |- ( ( M gcd N ) || M /\ ( M gcd N ) || N ) |
| 6 | 5 | simpli | |- ( M gcd N ) || M |
| 7 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 8 | 2 3 7 | mp2an | |- ( M gcd N ) e. NN0 |
| 9 | 8 | nn0zi | |- ( M gcd N ) e. ZZ |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | dvds2ln | |- ( ( ( K e. ZZ /\ 1 e. ZZ ) /\ ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) ) |
|
| 12 | 1 10 11 | mpanl12 | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) ) |
| 13 | 9 2 3 12 | mp3an | |- ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) |
| 14 | 5 13 | ax-mp | |- ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) |
| 15 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 16 | 3 15 | ax-mp | |- N e. CC |
| 17 | 16 | mullidi | |- ( 1 x. N ) = N |
| 18 | 17 | oveq2i | |- ( ( K x. M ) + ( 1 x. N ) ) = ( ( K x. M ) + N ) |
| 19 | 14 18 | breqtri | |- ( M gcd N ) || ( ( K x. M ) + N ) |
| 20 | zmulcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
|
| 21 | 1 2 20 | mp2an | |- ( K x. M ) e. ZZ |
| 22 | zaddcl | |- ( ( ( K x. M ) e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) + N ) e. ZZ ) |
|
| 23 | 21 3 22 | mp2an | |- ( ( K x. M ) + N ) e. ZZ |
| 24 | dvdslegcd | |- ( ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) /\ -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) |
|
| 25 | 24 | ex | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) ) |
| 26 | 9 2 23 25 | mp3an | |- ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) |
| 27 | 6 19 26 | mp2ani | |- ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) |
| 28 | gcddvds | |- ( ( M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) ) |
|
| 29 | 2 23 28 | mp2an | |- ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) |
| 30 | 29 | simpli | |- ( M gcd ( ( K x. M ) + N ) ) || M |
| 31 | gcdcl | |- ( ( M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( M gcd ( ( K x. M ) + N ) ) e. NN0 ) |
|
| 32 | 2 23 31 | mp2an | |- ( M gcd ( ( K x. M ) + N ) ) e. NN0 |
| 33 | 32 | nn0zi | |- ( M gcd ( ( K x. M ) + N ) ) e. ZZ |
| 34 | znegcl | |- ( K e. ZZ -> -u K e. ZZ ) |
|
| 35 | 1 34 | ax-mp | |- -u K e. ZZ |
| 36 | dvds2ln | |- ( ( ( -u K e. ZZ /\ 1 e. ZZ ) /\ ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) ) |
|
| 37 | 35 10 36 | mpanl12 | |- ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) ) |
| 38 | 33 2 23 37 | mp3an | |- ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) |
| 39 | 29 38 | ax-mp | |- ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) |
| 40 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 41 | 1 40 | ax-mp | |- K e. CC |
| 42 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 43 | 2 42 | ax-mp | |- M e. CC |
| 44 | 41 43 | mulneg1i | |- ( -u K x. M ) = -u ( K x. M ) |
| 45 | zcn | |- ( ( ( K x. M ) + N ) e. ZZ -> ( ( K x. M ) + N ) e. CC ) |
|
| 46 | 23 45 | ax-mp | |- ( ( K x. M ) + N ) e. CC |
| 47 | 46 | mullidi | |- ( 1 x. ( ( K x. M ) + N ) ) = ( ( K x. M ) + N ) |
| 48 | 44 47 | oveq12i | |- ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) = ( -u ( K x. M ) + ( ( K x. M ) + N ) ) |
| 49 | 41 43 | mulcli | |- ( K x. M ) e. CC |
| 50 | 49 | negcli | |- -u ( K x. M ) e. CC |
| 51 | 49 | negidi | |- ( ( K x. M ) + -u ( K x. M ) ) = 0 |
| 52 | 49 50 51 | addcomli | |- ( -u ( K x. M ) + ( K x. M ) ) = 0 |
| 53 | 52 | oveq1i | |- ( ( -u ( K x. M ) + ( K x. M ) ) + N ) = ( 0 + N ) |
| 54 | 50 49 16 | addassi | |- ( ( -u ( K x. M ) + ( K x. M ) ) + N ) = ( -u ( K x. M ) + ( ( K x. M ) + N ) ) |
| 55 | 16 | addlidi | |- ( 0 + N ) = N |
| 56 | 53 54 55 | 3eqtr3i | |- ( -u ( K x. M ) + ( ( K x. M ) + N ) ) = N |
| 57 | 48 56 | eqtri | |- ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) = N |
| 58 | 39 57 | breqtri | |- ( M gcd ( ( K x. M ) + N ) ) || N |
| 59 | dvdslegcd | |- ( ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
|
| 60 | 59 | ex | |- ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) ) |
| 61 | 33 2 3 60 | mp3an | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
| 62 | 30 58 61 | mp2ani | |- ( -. ( M = 0 /\ N = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) |
| 63 | 27 62 | anim12i | |- ( ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) /\ ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
| 64 | 9 | zrei | |- ( M gcd N ) e. RR |
| 65 | 33 | zrei | |- ( M gcd ( ( K x. M ) + N ) ) e. RR |
| 66 | 64 65 | letri3i | |- ( ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) <-> ( ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) /\ ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
| 67 | 63 66 | sylibr | |- ( ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 68 | pm4.57 | |- ( -. ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) <-> ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) \/ ( M = 0 /\ N = 0 ) ) ) |
|
| 69 | oveq2 | |- ( M = 0 -> ( K x. M ) = ( K x. 0 ) ) |
|
| 70 | 41 | mul01i | |- ( K x. 0 ) = 0 |
| 71 | 69 70 | eqtrdi | |- ( M = 0 -> ( K x. M ) = 0 ) |
| 72 | 71 | oveq1d | |- ( M = 0 -> ( ( K x. M ) + N ) = ( 0 + N ) ) |
| 73 | 72 55 | eqtrdi | |- ( M = 0 -> ( ( K x. M ) + N ) = N ) |
| 74 | 73 | eqeq1d | |- ( M = 0 -> ( ( ( K x. M ) + N ) = 0 <-> N = 0 ) ) |
| 75 | 74 | pm5.32i | |- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) <-> ( M = 0 /\ N = 0 ) ) |
| 76 | oveq12 | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
|
| 77 | oveq12 | |- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) = ( 0 gcd 0 ) ) |
|
| 78 | 75 77 | sylbir | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) = ( 0 gcd 0 ) ) |
| 79 | 76 78 | eqtr4d | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 80 | 75 79 | sylbi | |- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 81 | 80 79 | jaoi | |- ( ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) \/ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 82 | 68 81 | sylbi | |- ( -. ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 83 | 67 82 | pm2.61i | |- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) |