This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd0id | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd0val | ⊢ ( 0 gcd 0 ) = 0 | |
| 2 | oveq2 | ⊢ ( 𝑁 = 0 → ( 0 gcd 𝑁 ) = ( 0 gcd 0 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = ( abs ‘ 0 ) ) | |
| 4 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = 0 ) |
| 6 | 1 2 5 | 3eqtr4a | ⊢ ( 𝑁 = 0 → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 = 0 ) → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | gcddvds | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 gcd 𝑁 ) ∥ 0 ∧ ( 0 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( ( 0 gcd 𝑁 ) ∥ 0 ∧ ( 0 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 11 | 10 | simprd | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) ∥ 𝑁 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 0 gcd 𝑁 ) ∥ 𝑁 ) |
| 13 | gcdcl | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 gcd 𝑁 ) ∈ ℕ0 ) | |
| 14 | 8 13 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) ∈ ℕ0 ) |
| 15 | 14 | nn0zd | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) ∈ ℤ ) |
| 16 | dvdsleabs | ⊢ ( ( ( 0 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 0 gcd 𝑁 ) ∥ 𝑁 → ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ) ) | |
| 17 | 15 16 | syl3an1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 0 gcd 𝑁 ) ∥ 𝑁 → ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 18 | 17 | 3anidm12 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 0 gcd 𝑁 ) ∥ 𝑁 → ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 19 | 12 18 | mpd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ) |
| 20 | zabscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) | |
| 21 | dvds0 | ⊢ ( ( abs ‘ 𝑁 ) ∈ ℤ → ( abs ‘ 𝑁 ) ∥ 0 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∥ 0 ) |
| 23 | iddvds | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) | |
| 24 | absdvdsb | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ 𝑁 ↔ ( abs ‘ 𝑁 ) ∥ 𝑁 ) ) | |
| 25 | 24 | anidms | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∥ 𝑁 ↔ ( abs ‘ 𝑁 ) ∥ 𝑁 ) ) |
| 26 | 23 25 | mpbid | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∥ 𝑁 ) |
| 27 | 22 26 | jca | ⊢ ( 𝑁 ∈ ℤ → ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) ) |
| 29 | eqid | ⊢ 0 = 0 | |
| 30 | 29 | biantrur | ⊢ ( 𝑁 = 0 ↔ ( 0 = 0 ∧ 𝑁 = 0 ) ) |
| 31 | 30 | necon3abii | ⊢ ( 𝑁 ≠ 0 ↔ ¬ ( 0 = 0 ∧ 𝑁 = 0 ) ) |
| 32 | dvdslegcd | ⊢ ( ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 0 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) | |
| 33 | 32 | ex | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 0 = 0 ∧ 𝑁 = 0 ) → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 34 | 8 33 | mp3an2 | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 0 = 0 ∧ 𝑁 = 0 ) → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 35 | 20 34 | mpancom | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 0 = 0 ∧ 𝑁 = 0 ) → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 36 | 31 35 | biimtrid | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ≠ 0 → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( ( abs ‘ 𝑁 ) ∥ 0 ∧ ( abs ‘ 𝑁 ) ∥ 𝑁 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) |
| 38 | 28 37 | mpd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) |
| 39 | 15 | zred | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) ∈ ℝ ) |
| 40 | 20 | zred | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 41 | 39 40 | letri3d | ⊢ ( 𝑁 ∈ ℤ → ( ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ↔ ( ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ↔ ( ( 0 gcd 𝑁 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ≤ ( 0 gcd 𝑁 ) ) ) ) |
| 43 | 19 38 42 | mpbir2and | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 44 | 7 43 | pm2.61dane | ⊢ ( 𝑁 ∈ ℤ → ( 0 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |