This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd0id | |- ( N e. ZZ -> ( 0 gcd N ) = ( abs ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 2 | oveq2 | |- ( N = 0 -> ( 0 gcd N ) = ( 0 gcd 0 ) ) |
|
| 3 | fveq2 | |- ( N = 0 -> ( abs ` N ) = ( abs ` 0 ) ) |
|
| 4 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 5 | 3 4 | eqtrdi | |- ( N = 0 -> ( abs ` N ) = 0 ) |
| 6 | 1 2 5 | 3eqtr4a | |- ( N = 0 -> ( 0 gcd N ) = ( abs ` N ) ) |
| 7 | 6 | adantl | |- ( ( N e. ZZ /\ N = 0 ) -> ( 0 gcd N ) = ( abs ` N ) ) |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | gcddvds | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( ( 0 gcd N ) || 0 /\ ( 0 gcd N ) || N ) ) |
|
| 10 | 8 9 | mpan | |- ( N e. ZZ -> ( ( 0 gcd N ) || 0 /\ ( 0 gcd N ) || N ) ) |
| 11 | 10 | simprd | |- ( N e. ZZ -> ( 0 gcd N ) || N ) |
| 12 | 11 | adantr | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) || N ) |
| 13 | gcdcl | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 gcd N ) e. NN0 ) |
|
| 14 | 8 13 | mpan | |- ( N e. ZZ -> ( 0 gcd N ) e. NN0 ) |
| 15 | 14 | nn0zd | |- ( N e. ZZ -> ( 0 gcd N ) e. ZZ ) |
| 16 | dvdsleabs | |- ( ( ( 0 gcd N ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
|
| 17 | 15 16 | syl3an1 | |- ( ( N e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
| 18 | 17 | 3anidm12 | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
| 19 | 12 18 | mpd | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) <_ ( abs ` N ) ) |
| 20 | zabscl | |- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
|
| 21 | dvds0 | |- ( ( abs ` N ) e. ZZ -> ( abs ` N ) || 0 ) |
|
| 22 | 20 21 | syl | |- ( N e. ZZ -> ( abs ` N ) || 0 ) |
| 23 | iddvds | |- ( N e. ZZ -> N || N ) |
|
| 24 | absdvdsb | |- ( ( N e. ZZ /\ N e. ZZ ) -> ( N || N <-> ( abs ` N ) || N ) ) |
|
| 25 | 24 | anidms | |- ( N e. ZZ -> ( N || N <-> ( abs ` N ) || N ) ) |
| 26 | 23 25 | mpbid | |- ( N e. ZZ -> ( abs ` N ) || N ) |
| 27 | 22 26 | jca | |- ( N e. ZZ -> ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) ) |
| 28 | 27 | adantr | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) ) |
| 29 | eqid | |- 0 = 0 |
|
| 30 | 29 | biantrur | |- ( N = 0 <-> ( 0 = 0 /\ N = 0 ) ) |
| 31 | 30 | necon3abii | |- ( N =/= 0 <-> -. ( 0 = 0 /\ N = 0 ) ) |
| 32 | dvdslegcd | |- ( ( ( ( abs ` N ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) /\ -. ( 0 = 0 /\ N = 0 ) ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) |
|
| 33 | 32 | ex | |- ( ( ( abs ` N ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 34 | 8 33 | mp3an2 | |- ( ( ( abs ` N ) e. ZZ /\ N e. ZZ ) -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 35 | 20 34 | mpancom | |- ( N e. ZZ -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 36 | 31 35 | biimtrid | |- ( N e. ZZ -> ( N =/= 0 -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 37 | 36 | imp | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) |
| 38 | 28 37 | mpd | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) <_ ( 0 gcd N ) ) |
| 39 | 15 | zred | |- ( N e. ZZ -> ( 0 gcd N ) e. RR ) |
| 40 | 20 | zred | |- ( N e. ZZ -> ( abs ` N ) e. RR ) |
| 41 | 39 40 | letri3d | |- ( N e. ZZ -> ( ( 0 gcd N ) = ( abs ` N ) <-> ( ( 0 gcd N ) <_ ( abs ` N ) /\ ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 42 | 41 | adantr | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) = ( abs ` N ) <-> ( ( 0 gcd N ) <_ ( abs ` N ) /\ ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 43 | 19 38 42 | mpbir2and | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) = ( abs ` N ) ) |
| 44 | 7 43 | pm2.61dane | |- ( N e. ZZ -> ( 0 gcd N ) = ( abs ` N ) ) |