This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzofzp1b | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzofzp1 | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) | |
| 2 | simpl | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 3 | eluzelz | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐶 ∈ ℤ ) | |
| 4 | elfzuz3 | ⊢ ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐶 + 1 ) ) ) | |
| 5 | eluzp1m1 | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐶 + 1 ) ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 7 | elfzuzb | ⊢ ( 𝐶 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 8 | 2 6 7 | sylanbrc | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 9 | elfzel2 | ⊢ ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 11 | fzoval | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 13 | 8 12 | eleqtrrd | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ) |
| 14 | 13 | ex | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ) ) |
| 15 | 1 14 | impbid2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) ) |