This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzofzp1b | |- ( C e. ( ZZ>= ` A ) -> ( C e. ( A ..^ B ) <-> ( C + 1 ) e. ( A ... B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzofzp1 | |- ( C e. ( A ..^ B ) -> ( C + 1 ) e. ( A ... B ) ) |
|
| 2 | simpl | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( ZZ>= ` A ) ) |
|
| 3 | eluzelz | |- ( C e. ( ZZ>= ` A ) -> C e. ZZ ) |
|
| 4 | elfzuz3 | |- ( ( C + 1 ) e. ( A ... B ) -> B e. ( ZZ>= ` ( C + 1 ) ) ) |
|
| 5 | eluzp1m1 | |- ( ( C e. ZZ /\ B e. ( ZZ>= ` ( C + 1 ) ) ) -> ( B - 1 ) e. ( ZZ>= ` C ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> ( B - 1 ) e. ( ZZ>= ` C ) ) |
| 7 | elfzuzb | |- ( C e. ( A ... ( B - 1 ) ) <-> ( C e. ( ZZ>= ` A ) /\ ( B - 1 ) e. ( ZZ>= ` C ) ) ) |
|
| 8 | 2 6 7 | sylanbrc | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( A ... ( B - 1 ) ) ) |
| 9 | elfzel2 | |- ( ( C + 1 ) e. ( A ... B ) -> B e. ZZ ) |
|
| 10 | 9 | adantl | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> B e. ZZ ) |
| 11 | fzoval | |- ( B e. ZZ -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
| 13 | 8 12 | eleqtrrd | |- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( A ..^ B ) ) |
| 14 | 13 | ex | |- ( C e. ( ZZ>= ` A ) -> ( ( C + 1 ) e. ( A ... B ) -> C e. ( A ..^ B ) ) ) |
| 15 | 1 14 | impbid2 | |- ( C e. ( ZZ>= ` A ) -> ( C e. ( A ..^ B ) <-> ( C + 1 ) e. ( A ... B ) ) ) |