This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzofzim | ⊢ ( ( 𝐾 ≠ 𝑀 ∧ 𝐾 ∈ ( 0 ... 𝑀 ) ) → 𝐾 ∈ ( 0 ..^ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑀 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ) | |
| 2 | simpl1 | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝐾 ∈ ℕ0 ) | |
| 3 | necom | ⊢ ( 𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾 ) | |
| 4 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 5 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 6 | ltlen | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐾 < 𝑀 ↔ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 < 𝑀 ↔ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ) ) |
| 8 | 7 | bicomd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ↔ 𝐾 < 𝑀 ) ) |
| 9 | elnn0z | ⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) | |
| 10 | 0red | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 11 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 13 | 5 | adantl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 14 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 0 < 𝑀 ) ) | |
| 15 | 10 12 13 14 | syl3anc | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 0 < 𝑀 ) ) |
| 16 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 17 | elnnz | ⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) | |
| 18 | 17 | simplbi2 | ⊢ ( 𝑀 ∈ ℤ → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 19 | 16 18 | syl | ⊢ ( 𝑀 ∈ ℕ0 → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 21 | 15 20 | syld | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 𝑀 ∈ ℕ ) ) |
| 22 | 21 | expd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 0 ≤ 𝐾 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 23 | 22 | impancom | ⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) → ( 𝑀 ∈ ℕ0 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 24 | 9 23 | sylbi | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 26 | 8 25 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) → 𝑀 ∈ ℕ ) ) |
| 27 | 26 | expd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑀 → ( 𝑀 ≠ 𝐾 → 𝑀 ∈ ℕ ) ) ) |
| 28 | 3 27 | syl7bi | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑀 → ( 𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 29 | 28 | 3impia | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 31 | 8 | biimpd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) → 𝐾 < 𝑀 ) ) |
| 32 | 31 | exp4b | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝐾 ≤ 𝑀 → ( 𝑀 ≠ 𝐾 → 𝐾 < 𝑀 ) ) ) ) |
| 33 | 32 | 3imp | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 ≠ 𝐾 → 𝐾 < 𝑀 ) ) |
| 34 | 3 33 | biimtrid | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → 𝐾 < 𝑀 ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝐾 < 𝑀 ) |
| 36 | 2 30 35 | 3jca | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) ) |
| 38 | 1 37 | sylbi | ⊢ ( 𝐾 ∈ ( 0 ... 𝑀 ) → ( 𝐾 ≠ 𝑀 → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( 𝐾 ≠ 𝑀 ∧ 𝐾 ∈ ( 0 ... 𝑀 ) ) → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) |
| 40 | elfzo0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( ( 𝐾 ≠ 𝑀 ∧ 𝐾 ∈ ( 0 ... 𝑀 ) ) → 𝐾 ∈ ( 0 ..^ 𝑀 ) ) |