This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzofzim | |- ( ( K =/= M /\ K e. ( 0 ... M ) ) -> K e. ( 0 ..^ M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | |- ( K e. ( 0 ... M ) <-> ( K e. NN0 /\ M e. NN0 /\ K <_ M ) ) |
|
| 2 | simpl1 | |- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> K e. NN0 ) |
|
| 3 | necom | |- ( K =/= M <-> M =/= K ) |
|
| 4 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 5 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 6 | ltlen | |- ( ( K e. RR /\ M e. RR ) -> ( K < M <-> ( K <_ M /\ M =/= K ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( K < M <-> ( K <_ M /\ M =/= K ) ) ) |
| 8 | 7 | bicomd | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) <-> K < M ) ) |
| 9 | elnn0z | |- ( K e. NN0 <-> ( K e. ZZ /\ 0 <_ K ) ) |
|
| 10 | 0red | |- ( ( K e. ZZ /\ M e. NN0 ) -> 0 e. RR ) |
|
| 11 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 12 | 11 | adantr | |- ( ( K e. ZZ /\ M e. NN0 ) -> K e. RR ) |
| 13 | 5 | adantl | |- ( ( K e. ZZ /\ M e. NN0 ) -> M e. RR ) |
| 14 | lelttr | |- ( ( 0 e. RR /\ K e. RR /\ M e. RR ) -> ( ( 0 <_ K /\ K < M ) -> 0 < M ) ) |
|
| 15 | 10 12 13 14 | syl3anc | |- ( ( K e. ZZ /\ M e. NN0 ) -> ( ( 0 <_ K /\ K < M ) -> 0 < M ) ) |
| 16 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 17 | elnnz | |- ( M e. NN <-> ( M e. ZZ /\ 0 < M ) ) |
|
| 18 | 17 | simplbi2 | |- ( M e. ZZ -> ( 0 < M -> M e. NN ) ) |
| 19 | 16 18 | syl | |- ( M e. NN0 -> ( 0 < M -> M e. NN ) ) |
| 20 | 19 | adantl | |- ( ( K e. ZZ /\ M e. NN0 ) -> ( 0 < M -> M e. NN ) ) |
| 21 | 15 20 | syld | |- ( ( K e. ZZ /\ M e. NN0 ) -> ( ( 0 <_ K /\ K < M ) -> M e. NN ) ) |
| 22 | 21 | expd | |- ( ( K e. ZZ /\ M e. NN0 ) -> ( 0 <_ K -> ( K < M -> M e. NN ) ) ) |
| 23 | 22 | impancom | |- ( ( K e. ZZ /\ 0 <_ K ) -> ( M e. NN0 -> ( K < M -> M e. NN ) ) ) |
| 24 | 9 23 | sylbi | |- ( K e. NN0 -> ( M e. NN0 -> ( K < M -> M e. NN ) ) ) |
| 25 | 24 | imp | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( K < M -> M e. NN ) ) |
| 26 | 8 25 | sylbid | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) -> M e. NN ) ) |
| 27 | 26 | expd | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( K <_ M -> ( M =/= K -> M e. NN ) ) ) |
| 28 | 3 27 | syl7bi | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( K <_ M -> ( K =/= M -> M e. NN ) ) ) |
| 29 | 28 | 3impia | |- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> M e. NN ) ) |
| 30 | 29 | imp | |- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> M e. NN ) |
| 31 | 8 | biimpd | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) -> K < M ) ) |
| 32 | 31 | exp4b | |- ( K e. NN0 -> ( M e. NN0 -> ( K <_ M -> ( M =/= K -> K < M ) ) ) ) |
| 33 | 32 | 3imp | |- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( M =/= K -> K < M ) ) |
| 34 | 3 33 | biimtrid | |- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> K < M ) ) |
| 35 | 34 | imp | |- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> K < M ) |
| 36 | 2 30 35 | 3jca | |- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
| 37 | 36 | ex | |- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> ( K e. NN0 /\ M e. NN /\ K < M ) ) ) |
| 38 | 1 37 | sylbi | |- ( K e. ( 0 ... M ) -> ( K =/= M -> ( K e. NN0 /\ M e. NN /\ K < M ) ) ) |
| 39 | 38 | impcom | |- ( ( K =/= M /\ K e. ( 0 ... M ) ) -> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
| 40 | elfzo0 | |- ( K e. ( 0 ..^ M ) <-> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
|
| 41 | 39 40 | sylibr | |- ( ( K =/= M /\ K e. ( 0 ... M ) ) -> K e. ( 0 ..^ M ) ) |