This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the integers from M to N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzind.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| fzind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| fzind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| fzind.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | ||
| fzind.5 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜓 ) | ||
| fzind.6 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | fzind | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzind.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fzind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | fzind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | fzind.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | fzind.5 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜓 ) | |
| 6 | fzind.6 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | breq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 9 | 8 1 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) → 𝜑 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜓 ) ) ) |
| 10 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑁 ↔ 𝑦 ≤ 𝑁 ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) ) ) |
| 12 | 11 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) → 𝜑 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) → 𝜒 ) ) ) |
| 13 | breq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ≤ 𝑁 ↔ ( 𝑦 + 1 ) ≤ 𝑁 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) ) ) |
| 15 | 14 3 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) → 𝜑 ) ↔ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜃 ) ) ) |
| 16 | breq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁 ) ) | |
| 17 | 16 | anbi2d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 18 | 17 4 | imbi12d | ⊢ ( 𝑥 = 𝐾 → ( ( ( 𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁 ) → 𝜑 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) ) ) |
| 19 | 5 | 3expib | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜓 ) ) |
| 20 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 21 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 22 | p1le | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝑦 ≤ 𝑁 ) | |
| 23 | 22 | 3expia | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑁 → 𝑦 ≤ 𝑁 ) ) |
| 24 | 20 21 23 | syl2an | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑦 + 1 ) ≤ 𝑁 → 𝑦 ≤ 𝑁 ) ) |
| 25 | 24 | imdistanda | ⊢ ( 𝑦 ∈ ℤ → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) ) ) |
| 26 | 25 | imim1d | ⊢ ( 𝑦 ∈ ℤ → ( ( ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) → 𝜒 ) → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜒 ) ) ) |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) → 𝜒 ) → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜒 ) ) ) |
| 28 | zltp1le | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑦 < 𝑁 ↔ ( 𝑦 + 1 ) ≤ 𝑁 ) ) | |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑦 < 𝑁 ↔ ( 𝑦 + 1 ) ≤ 𝑁 ) ) |
| 30 | 29 | expcom | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( 𝑦 < 𝑁 ↔ ( 𝑦 + 1 ) ≤ 𝑁 ) ) ) |
| 31 | 30 | pm5.32d | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ↔ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ↔ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) ) ) |
| 33 | 6 | expcom | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝜒 → 𝜃 ) ) ) |
| 34 | 33 | 3expa | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝜒 → 𝜃 ) ) ) |
| 35 | 34 | com12 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 36 | 32 35 | sylbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 37 | 36 | ex | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) ) |
| 38 | 37 | com23 | ⊢ ( 𝑀 ∈ ℤ → ( ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → ( 𝑁 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) ) |
| 39 | 38 | expd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( 𝑦 + 1 ) ≤ 𝑁 → ( 𝑁 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) ) ) |
| 40 | 39 | 3impib | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( 𝑦 + 1 ) ≤ 𝑁 → ( 𝑁 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) ) |
| 41 | 40 | impcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 42 | 41 | a2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜒 ) → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜃 ) ) ) |
| 43 | 27 42 | syld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ) → ( ( ( 𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁 ) → 𝜒 ) → ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ 𝑁 ) → 𝜃 ) ) ) |
| 44 | 9 12 15 18 19 43 | uzind | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) ) |
| 45 | 44 | expcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 ≤ 𝑁 → ( 𝑁 ∈ ℤ → 𝜏 ) ) ) |
| 46 | 45 | 3expb | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ) ) → ( 𝐾 ≤ 𝑁 → ( 𝑁 ∈ ℤ → 𝜏 ) ) ) |
| 47 | 46 | expcom | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℤ → ( 𝐾 ≤ 𝑁 → ( 𝑁 ∈ ℤ → 𝜏 ) ) ) ) |
| 48 | 47 | com23 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 ≤ 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → 𝜏 ) ) ) ) |
| 49 | 48 | 3impia | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → 𝜏 ) ) ) |
| 50 | 49 | impd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝜏 ) ) |
| 51 | 50 | impcom | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |