This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of fvimacnv , based on funimass3 . If funimass3 is ever proved directly, as opposed to using funimacnv pointwise, then the proof of funimacnv should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnvALT | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐴 ∈ dom 𝐹 → { 𝐴 } ⊆ dom 𝐹 ) | |
| 2 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ { 𝐴 } ⊆ dom 𝐹 ) → ( ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 4 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 5 | 4 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
| 6 | eqid | ⊢ dom 𝐹 = dom 𝐹 | |
| 7 | df-fn | ⊢ ( 𝐹 Fn dom 𝐹 ↔ ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) ) | |
| 8 | 7 | biimpri | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) → 𝐹 Fn dom 𝐹 ) |
| 9 | 6 8 | mpan2 | ⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
| 10 | fnsnfv | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) | |
| 11 | 9 10 | sylan | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 12 | 11 | sseq1d | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
| 13 | 5 12 | bitrid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
| 14 | snssg | ⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 16 | 3 13 15 | 3bitr4d | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |