This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of fvimacnv , based on funimass3 . If funimass3 is ever proved directly, as opposed to using funimacnv pointwise, then the proof of funimacnv should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnvALT | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( A e. dom F -> { A } C_ dom F ) |
|
| 2 | funimass3 | |- ( ( Fun F /\ { A } C_ dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( Fun F /\ A e. dom F ) -> ( ( F " { A } ) C_ B <-> { A } C_ ( `' F " B ) ) ) |
| 4 | fvex | |- ( F ` A ) e. _V |
|
| 5 | 4 | snss | |- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
| 6 | eqid | |- dom F = dom F |
|
| 7 | df-fn | |- ( F Fn dom F <-> ( Fun F /\ dom F = dom F ) ) |
|
| 8 | 7 | biimpri | |- ( ( Fun F /\ dom F = dom F ) -> F Fn dom F ) |
| 9 | 6 8 | mpan2 | |- ( Fun F -> F Fn dom F ) |
| 10 | fnsnfv | |- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
|
| 11 | 9 10 | sylan | |- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 12 | 11 | sseq1d | |- ( ( Fun F /\ A e. dom F ) -> ( { ( F ` A ) } C_ B <-> ( F " { A } ) C_ B ) ) |
| 13 | 5 12 | bitrid | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> ( F " { A } ) C_ B ) ) |
| 14 | snssg | |- ( A e. dom F -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) |
|
| 15 | 14 | adantl | |- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " B ) <-> { A } C_ ( `' F " B ) ) ) |
| 16 | 3 13 15 | 3bitr4d | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |