This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functional part of F is a function. (Contributed by Scott Fenton, 16-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartfun | |- Fun Funpart F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | 2 | brresi | |- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F z ) ) |
| 4 | 3 | simprbi | |- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z -> x F z ) |
| 5 | vex | |- y e. _V |
|
| 6 | 5 | brresi | |- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) ) |
| 7 | funpartlem | |- ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. w ( F " { x } ) = { w } ) |
|
| 8 | 7 | anbi1i | |- ( ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) |
| 9 | 6 8 | bitri | |- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) |
| 10 | df-br | |- ( x F y <-> <. x , y >. e. F ) |
|
| 11 | df-br | |- ( x F z <-> <. x , z >. e. F ) |
|
| 12 | 10 11 | anbi12i | |- ( ( x F y /\ x F z ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) |
| 13 | vex | |- x e. _V |
|
| 14 | 13 5 | elimasn | |- ( y e. ( F " { x } ) <-> <. x , y >. e. F ) |
| 15 | 13 2 | elimasn | |- ( z e. ( F " { x } ) <-> <. x , z >. e. F ) |
| 16 | 14 15 | anbi12i | |- ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) |
| 17 | 12 16 | bitr4i | |- ( ( x F y /\ x F z ) <-> ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) ) |
| 18 | eleq2 | |- ( ( F " { x } ) = { w } -> ( y e. ( F " { x } ) <-> y e. { w } ) ) |
|
| 19 | eleq2 | |- ( ( F " { x } ) = { w } -> ( z e. ( F " { x } ) <-> z e. { w } ) ) |
|
| 20 | 18 19 | anbi12d | |- ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( y e. { w } /\ z e. { w } ) ) ) |
| 21 | velsn | |- ( y e. { w } <-> y = w ) |
|
| 22 | velsn | |- ( z e. { w } <-> z = w ) |
|
| 23 | equtr2 | |- ( ( y = w /\ z = w ) -> y = z ) |
|
| 24 | 21 22 23 | syl2anb | |- ( ( y e. { w } /\ z e. { w } ) -> y = z ) |
| 25 | 20 24 | biimtrdi | |- ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) -> y = z ) ) |
| 26 | 17 25 | biimtrid | |- ( ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) |
| 27 | 26 | exlimiv | |- ( E. w ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) |
| 28 | 27 | impl | |- ( ( ( E. w ( F " { x } ) = { w } /\ x F y ) /\ x F z ) -> y = z ) |
| 29 | 9 28 | sylanb | |- ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x F z ) -> y = z ) |
| 30 | 4 29 | sylan2 | |- ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 31 | 30 | gen2 | |- A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 32 | 31 | ax-gen | |- A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 33 | df-funpart | |- Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
|
| 34 | 33 | funeqi | |- ( Fun Funpart F <-> Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) |
| 35 | dffun2 | |- ( Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) |
|
| 36 | 34 35 | bitri | |- ( Fun Funpart F <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) |
| 37 | 1 32 36 | mpbir2an | |- Fun Funpart F |