This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinclem3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| functhinclem3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| functhinclem3.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| functhinclem3.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | ||
| functhinclem3.1 | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) = ∅ → ( 𝑋 𝐻 𝑌 ) = ∅ ) ) | ||
| functhinclem3.2 | ⊢ ( 𝜑 → ∃* 𝑛 𝑛 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| Assertion | functhinclem3 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 2 | functhinclem3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | functhinclem3.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | functhinclem3.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 5 | functhinclem3.1 | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) = ∅ → ( 𝑋 𝐻 𝑌 ) = ∅ ) ) | |
| 6 | functhinclem3.2 | ⊢ ( 𝜑 → ∃* 𝑛 𝑛 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 7 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 8 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 9 | 7 8 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 10 | 7 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 11 | 8 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 12 | 10 11 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 13 | 9 12 | xpeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 14 | ovex | ⊢ ( 𝑋 𝐻 𝑌 ) ∈ V | |
| 15 | ovex | ⊢ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∈ V | |
| 16 | 14 15 | xpex | ⊢ ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∈ V |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∈ V ) |
| 18 | 4 13 1 2 17 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 19 | eqid | ⊢ ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 20 | 19 5 6 | mofeu | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↔ ( 𝑋 𝐺 𝑌 ) = ( ( 𝑋 𝐻 𝑌 ) × ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 | 21 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |