This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthincd2lem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| isthincd2lem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isthincd2lem1.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| isthincd2lem1.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| thincmo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincmo2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| thincmo2.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | ||
| Assertion | thincmo2 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 2 | isthincd2lem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | isthincd2lem1.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | isthincd2lem1.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 5 | thincmo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 6 | thincmo2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 7 | thincmo2.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 8 | 5 6 | isthinc | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 9 | 8 | simprbi | ⊢ ( 𝐶 ∈ ThinCat → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 11 | 1 2 3 4 10 | isthincd2lem1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |