This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhincfun.d | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| functhincfun.e | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | ||
| Assertion | functhincfun | ⊢ ( 𝜑 → Fun ( 𝐶 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhincfun.d | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | functhincfun.e | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | |
| 3 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝐶 ∈ Cat ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝐷 ∈ ThinCat ) |
| 11 | 5 6 4 | funcf1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | |
| 13 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) | |
| 14 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 16 | 5 7 8 13 14 15 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 17 | 16 | f002 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) ) |
| 18 | 17 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) ) |
| 19 | 5 6 7 8 9 10 11 12 18 | functhinc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ↔ 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 20 | 4 19 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) | |
| 22 | 5 6 7 8 9 10 11 12 18 | functhinc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) ℎ ↔ ℎ = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 23 | 21 22 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 24 | 20 23 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) ) → 𝑔 = ℎ ) |
| 25 | 24 | ex | ⊢ ( 𝜑 → ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
| 26 | 25 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
| 27 | 26 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) |
| 28 | dffun2 | ⊢ ( Fun ( 𝐶 Func 𝐷 ) ↔ ( Rel ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) ) | |
| 29 | 28 | biimpri | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ 𝑓 ( 𝐶 Func 𝐷 ) ℎ ) → 𝑔 = ℎ ) ) → Fun ( 𝐶 Func 𝐷 ) ) |
| 30 | 3 27 29 | sylancr | ⊢ ( 𝜑 → Fun ( 𝐶 Func 𝐷 ) ) |