This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | |
| idfusubc.i | ⊢ 𝐼 = ( idfunc ‘ 𝑆 ) | ||
| idfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | idfusubc0 | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | idfusubc.i | ⊢ 𝐼 = ( idfunc ‘ 𝑆 ) | |
| 3 | idfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | id | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 5 | 1 4 | subccat | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝑆 ∈ Cat ) |
| 6 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 7 | 2 3 5 6 | idfuval | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) 〉 ) |
| 8 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑆 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 9 | df-ov | ⊢ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) = ( ( Hom ‘ 𝑆 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 10 | 8 9 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) = ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) |
| 11 | 10 | reseq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) |
| 12 | 11 | mpompt | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) |
| 13 | 12 | a1i | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 14 | 13 | opeq2d | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝑆 ) ‘ 𝑧 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |
| 15 | 7 14 | eqtrd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |