This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvuni | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ◡ ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq | ⊢ ( 𝑥 = 𝑣 → ◡ 𝑥 = ◡ 𝑣 ) | |
| 2 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝑣 → ( 𝑧 = ◡ 𝑥 ↔ 𝑧 = ◡ 𝑣 ) ) |
| 3 | 2 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 = ◡ 𝑣 ) |
| 4 | cnveq | ⊢ ( 𝑓 = 𝑣 → ◡ 𝑓 = ◡ 𝑣 ) | |
| 5 | 4 | funeqd | ⊢ ( 𝑓 = 𝑣 → ( Fun ◡ 𝑓 ↔ Fun ◡ 𝑣 ) ) |
| 6 | sseq1 | ⊢ ( 𝑓 = 𝑣 → ( 𝑓 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑔 ) ) | |
| 7 | sseq2 | ⊢ ( 𝑓 = 𝑣 → ( 𝑔 ⊆ 𝑓 ↔ 𝑔 ⊆ 𝑣 ) ) | |
| 8 | 6 7 | orbi12d | ⊢ ( 𝑓 = 𝑣 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑓 = 𝑣 → ( ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) |
| 10 | 5 9 | anbi12d | ⊢ ( 𝑓 = 𝑣 → ( ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑣 ∈ 𝐴 → ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) ) |
| 12 | funeq | ⊢ ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ↔ Fun ◡ 𝑣 ) ) | |
| 13 | 12 | biimprcd | ⊢ ( Fun ◡ 𝑣 → ( 𝑧 = ◡ 𝑣 → Fun 𝑧 ) ) |
| 14 | sseq2 | ⊢ ( 𝑔 = 𝑥 → ( 𝑣 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑥 ) ) | |
| 15 | sseq1 | ⊢ ( 𝑔 = 𝑥 → ( 𝑔 ⊆ 𝑣 ↔ 𝑥 ⊆ 𝑣 ) ) | |
| 16 | 14 15 | orbi12d | ⊢ ( 𝑔 = 𝑥 → ( ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ↔ ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) ) ) |
| 17 | 16 | rspcv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) ) ) |
| 18 | cnvss | ⊢ ( 𝑣 ⊆ 𝑥 → ◡ 𝑣 ⊆ ◡ 𝑥 ) | |
| 19 | cnvss | ⊢ ( 𝑥 ⊆ 𝑣 → ◡ 𝑥 ⊆ ◡ 𝑣 ) | |
| 20 | 18 19 | orim12i | ⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( ◡ 𝑣 ⊆ ◡ 𝑥 ∨ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) |
| 21 | sseq12 | ⊢ ( ( 𝑧 = ◡ 𝑣 ∧ 𝑤 = ◡ 𝑥 ) → ( 𝑧 ⊆ 𝑤 ↔ ◡ 𝑣 ⊆ ◡ 𝑥 ) ) | |
| 22 | 21 | ancoms | ⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑧 ⊆ 𝑤 ↔ ◡ 𝑣 ⊆ ◡ 𝑥 ) ) |
| 23 | sseq12 | ⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑤 ⊆ 𝑧 ↔ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) | |
| 24 | 22 23 | orbi12d | ⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ↔ ( ◡ 𝑣 ⊆ ◡ 𝑥 ∨ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) ) |
| 25 | 20 24 | syl5ibrcom | ⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
| 26 | 25 | expd | ⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 27 | 17 26 | syl6com | ⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 28 | 27 | rexlimdv | ⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 29 | 28 | com23 | ⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑧 = ◡ 𝑣 → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 30 | 29 | alrimdv | ⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑧 = ◡ 𝑣 → ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 31 | 13 30 | anim12ii | ⊢ ( ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) → ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 32 | 11 31 | syl6com | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( 𝑣 ∈ 𝐴 → ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) ) |
| 33 | 32 | rexlimdv | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ∃ 𝑣 ∈ 𝐴 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 34 | 3 33 | biimtrid | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 35 | 34 | alrimiv | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 36 | df-ral | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) | |
| 37 | vex | ⊢ 𝑧 ∈ V | |
| 38 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ◡ 𝑥 ↔ 𝑧 = ◡ 𝑥 ) ) | |
| 39 | 38 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ) ) |
| 40 | 37 39 | elab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ) |
| 41 | eqeq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 = ◡ 𝑥 ↔ 𝑤 = ◡ 𝑥 ) ) | |
| 42 | 41 | rexbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 ) ) |
| 43 | 42 | ralab | ⊢ ( ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
| 44 | 43 | anbi2i | ⊢ ( ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ↔ ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 45 | 40 44 | imbi12i | ⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 46 | 45 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 47 | 36 46 | bitr2i | ⊢ ( ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
| 48 | 35 47 | sylib | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
| 49 | fununi | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) → Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) | |
| 50 | 48 49 | syl | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) |
| 51 | cnvuni | ⊢ ◡ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡ 𝑥 | |
| 52 | vex | ⊢ 𝑥 ∈ V | |
| 53 | 52 | cnvex | ⊢ ◡ 𝑥 ∈ V |
| 54 | 53 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 ◡ 𝑥 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } |
| 55 | 51 54 | eqtri | ⊢ ◡ ∪ 𝐴 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } |
| 56 | 55 | funeqi | ⊢ ( Fun ◡ ∪ 𝐴 ↔ Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) |
| 57 | 50 56 | sylibr | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ◡ ∪ 𝐴 ) |