This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvuni | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun `' U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq | |- ( x = v -> `' x = `' v ) |
|
| 2 | 1 | eqeq2d | |- ( x = v -> ( z = `' x <-> z = `' v ) ) |
| 3 | 2 | cbvrexvw | |- ( E. x e. A z = `' x <-> E. v e. A z = `' v ) |
| 4 | cnveq | |- ( f = v -> `' f = `' v ) |
|
| 5 | 4 | funeqd | |- ( f = v -> ( Fun `' f <-> Fun `' v ) ) |
| 6 | sseq1 | |- ( f = v -> ( f C_ g <-> v C_ g ) ) |
|
| 7 | sseq2 | |- ( f = v -> ( g C_ f <-> g C_ v ) ) |
|
| 8 | 6 7 | orbi12d | |- ( f = v -> ( ( f C_ g \/ g C_ f ) <-> ( v C_ g \/ g C_ v ) ) ) |
| 9 | 8 | ralbidv | |- ( f = v -> ( A. g e. A ( f C_ g \/ g C_ f ) <-> A. g e. A ( v C_ g \/ g C_ v ) ) ) |
| 10 | 5 9 | anbi12d | |- ( f = v -> ( ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) <-> ( Fun `' v /\ A. g e. A ( v C_ g \/ g C_ v ) ) ) ) |
| 11 | 10 | rspcv | |- ( v e. A -> ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( Fun `' v /\ A. g e. A ( v C_ g \/ g C_ v ) ) ) ) |
| 12 | funeq | |- ( z = `' v -> ( Fun z <-> Fun `' v ) ) |
|
| 13 | 12 | biimprcd | |- ( Fun `' v -> ( z = `' v -> Fun z ) ) |
| 14 | sseq2 | |- ( g = x -> ( v C_ g <-> v C_ x ) ) |
|
| 15 | sseq1 | |- ( g = x -> ( g C_ v <-> x C_ v ) ) |
|
| 16 | 14 15 | orbi12d | |- ( g = x -> ( ( v C_ g \/ g C_ v ) <-> ( v C_ x \/ x C_ v ) ) ) |
| 17 | 16 | rspcv | |- ( x e. A -> ( A. g e. A ( v C_ g \/ g C_ v ) -> ( v C_ x \/ x C_ v ) ) ) |
| 18 | cnvss | |- ( v C_ x -> `' v C_ `' x ) |
|
| 19 | cnvss | |- ( x C_ v -> `' x C_ `' v ) |
|
| 20 | 18 19 | orim12i | |- ( ( v C_ x \/ x C_ v ) -> ( `' v C_ `' x \/ `' x C_ `' v ) ) |
| 21 | sseq12 | |- ( ( z = `' v /\ w = `' x ) -> ( z C_ w <-> `' v C_ `' x ) ) |
|
| 22 | 21 | ancoms | |- ( ( w = `' x /\ z = `' v ) -> ( z C_ w <-> `' v C_ `' x ) ) |
| 23 | sseq12 | |- ( ( w = `' x /\ z = `' v ) -> ( w C_ z <-> `' x C_ `' v ) ) |
|
| 24 | 22 23 | orbi12d | |- ( ( w = `' x /\ z = `' v ) -> ( ( z C_ w \/ w C_ z ) <-> ( `' v C_ `' x \/ `' x C_ `' v ) ) ) |
| 25 | 20 24 | syl5ibrcom | |- ( ( v C_ x \/ x C_ v ) -> ( ( w = `' x /\ z = `' v ) -> ( z C_ w \/ w C_ z ) ) ) |
| 26 | 25 | expd | |- ( ( v C_ x \/ x C_ v ) -> ( w = `' x -> ( z = `' v -> ( z C_ w \/ w C_ z ) ) ) ) |
| 27 | 17 26 | syl6com | |- ( A. g e. A ( v C_ g \/ g C_ v ) -> ( x e. A -> ( w = `' x -> ( z = `' v -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 28 | 27 | rexlimdv | |- ( A. g e. A ( v C_ g \/ g C_ v ) -> ( E. x e. A w = `' x -> ( z = `' v -> ( z C_ w \/ w C_ z ) ) ) ) |
| 29 | 28 | com23 | |- ( A. g e. A ( v C_ g \/ g C_ v ) -> ( z = `' v -> ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) |
| 30 | 29 | alrimdv | |- ( A. g e. A ( v C_ g \/ g C_ v ) -> ( z = `' v -> A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) |
| 31 | 13 30 | anim12ii | |- ( ( Fun `' v /\ A. g e. A ( v C_ g \/ g C_ v ) ) -> ( z = `' v -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 32 | 11 31 | syl6com | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( v e. A -> ( z = `' v -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) ) |
| 33 | 32 | rexlimdv | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( E. v e. A z = `' v -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 34 | 3 33 | biimtrid | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> ( E. x e. A z = `' x -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 35 | 34 | alrimiv | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> A. z ( E. x e. A z = `' x -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 36 | df-ral | |- ( A. z e. { y | E. x e. A y = `' x } ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) <-> A. z ( z e. { y | E. x e. A y = `' x } -> ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) ) ) |
|
| 37 | vex | |- z e. _V |
|
| 38 | eqeq1 | |- ( y = z -> ( y = `' x <-> z = `' x ) ) |
|
| 39 | 38 | rexbidv | |- ( y = z -> ( E. x e. A y = `' x <-> E. x e. A z = `' x ) ) |
| 40 | 37 39 | elab | |- ( z e. { y | E. x e. A y = `' x } <-> E. x e. A z = `' x ) |
| 41 | eqeq1 | |- ( y = w -> ( y = `' x <-> w = `' x ) ) |
|
| 42 | 41 | rexbidv | |- ( y = w -> ( E. x e. A y = `' x <-> E. x e. A w = `' x ) ) |
| 43 | 42 | ralab | |- ( A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) <-> A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) |
| 44 | 43 | anbi2i | |- ( ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) <-> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) |
| 45 | 40 44 | imbi12i | |- ( ( z e. { y | E. x e. A y = `' x } -> ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) ) <-> ( E. x e. A z = `' x -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 46 | 45 | albii | |- ( A. z ( z e. { y | E. x e. A y = `' x } -> ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) ) <-> A. z ( E. x e. A z = `' x -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) ) |
| 47 | 36 46 | bitr2i | |- ( A. z ( E. x e. A z = `' x -> ( Fun z /\ A. w ( E. x e. A w = `' x -> ( z C_ w \/ w C_ z ) ) ) ) <-> A. z e. { y | E. x e. A y = `' x } ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) ) |
| 48 | 35 47 | sylib | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> A. z e. { y | E. x e. A y = `' x } ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) ) |
| 49 | fununi | |- ( A. z e. { y | E. x e. A y = `' x } ( Fun z /\ A. w e. { y | E. x e. A y = `' x } ( z C_ w \/ w C_ z ) ) -> Fun U. { y | E. x e. A y = `' x } ) |
|
| 50 | 48 49 | syl | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun U. { y | E. x e. A y = `' x } ) |
| 51 | cnvuni | |- `' U. A = U_ x e. A `' x |
|
| 52 | vex | |- x e. _V |
|
| 53 | 52 | cnvex | |- `' x e. _V |
| 54 | 53 | dfiun2 | |- U_ x e. A `' x = U. { y | E. x e. A y = `' x } |
| 55 | 51 54 | eqtri | |- `' U. A = U. { y | E. x e. A y = `' x } |
| 56 | 55 | funeqi | |- ( Fun `' U. A <-> Fun U. { y | E. x e. A y = `' x } ) |
| 57 | 50 56 | sylibr | |- ( A. f e. A ( Fun `' f /\ A. g e. A ( f C_ g \/ g C_ f ) ) -> Fun `' U. A ) |