This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun11uni | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun ∪ 𝐴 ∧ Fun ◡ ∪ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) → Fun 𝑓 ) | |
| 2 | 1 | anim1i | ⊢ ( ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 4 | fununi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ 𝐴 ) |
| 6 | simpr | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) → Fun ◡ 𝑓 ) | |
| 7 | 6 | anim1i | ⊢ ( ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 9 | funcnvuni | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ◡ ∪ 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ◡ ∪ 𝐴 ) |
| 11 | 5 10 | jca | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( ( Fun 𝑓 ∧ Fun ◡ 𝑓 ) ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun ∪ 𝐴 ∧ Fun ◡ ∪ 𝐴 ) ) |