This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of stating that A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun11 | ⊢ ( ( Fun ◡ ◡ 𝐴 ∧ Fun ◡ 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | ⊢ ( ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ↔ ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) | |
| 2 | 1 | imbi2i | ⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ) |
| 3 | pm4.76 | ⊢ ( ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ) | |
| 4 | bi2.04 | ⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ↔ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) | |
| 5 | bi2.04 | ⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ↔ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
| 7 | 2 3 6 | 3bitr2i | ⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
| 8 | 7 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
| 9 | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) | |
| 10 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) | |
| 11 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦 ↔ 𝑧 𝐴 𝑦 ) ) | |
| 12 | 11 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ↔ ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) |
| 14 | 13 | equsalvw | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 16 | 10 15 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 17 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) | |
| 18 | 17 | anbi1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ↔ ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) ) ) |
| 19 | 18 | imbi1d | ⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
| 20 | 19 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 22 | 16 21 | anbi12i | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
| 23 | 8 9 22 | 3bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
| 24 | 23 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
| 25 | 19.26-2 | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) | |
| 26 | 24 25 | bitr2i | ⊢ ( ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |
| 27 | fun2cnv | ⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 ) | |
| 28 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑧 𝐴 𝑤 ) ) | |
| 29 | 28 | mo4 | ⊢ ( ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 30 | 29 | albii | ⊢ ( ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧 ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 31 | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) | |
| 32 | 31 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 33 | 27 30 32 | 3bitri | ⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
| 34 | funcnv2 | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 ) | |
| 35 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑤 ↔ 𝑧 𝐴 𝑤 ) ) | |
| 36 | 35 | mo4 | ⊢ ( ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 37 | 36 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 38 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) | |
| 39 | 38 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 40 | alcom | ⊢ ( ∀ 𝑤 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) | |
| 41 | 39 40 | bitri | ⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 42 | 34 37 41 | 3bitri | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
| 43 | 33 42 | anbi12i | ⊢ ( ( Fun ◡ ◡ 𝐴 ∧ Fun ◡ 𝐴 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
| 44 | alrot4 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) | |
| 45 | 26 43 44 | 3bitr4i | ⊢ ( ( Fun ◡ ◡ 𝐴 ∧ Fun ◡ 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |