This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of stating that A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun11 | |- ( ( Fun `' `' A /\ Fun `' A ) <-> A. x A. y A. z A. w ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | |- ( ( x = z <-> y = w ) <-> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) |
|
| 2 | 1 | imbi2i | |- ( ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( ( x A y /\ z A w ) -> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) ) |
| 3 | pm4.76 | |- ( ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) /\ ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) ) <-> ( ( x A y /\ z A w ) -> ( ( x = z -> y = w ) /\ ( y = w -> x = z ) ) ) ) |
|
| 4 | bi2.04 | |- ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) <-> ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) ) |
|
| 5 | bi2.04 | |- ( ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) <-> ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) |
|
| 6 | 4 5 | anbi12i | |- ( ( ( ( x A y /\ z A w ) -> ( x = z -> y = w ) ) /\ ( ( x A y /\ z A w ) -> ( y = w -> x = z ) ) ) <-> ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
| 7 | 2 3 6 | 3bitr2i | |- ( ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
| 8 | 7 | 2albii | |- ( A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. x A. y ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
| 9 | 19.26-2 | |- ( A. x A. y ( ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) <-> ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) ) |
|
| 10 | alcom | |- ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) ) |
|
| 11 | breq1 | |- ( x = z -> ( x A y <-> z A y ) ) |
|
| 12 | 11 | anbi1d | |- ( x = z -> ( ( x A y /\ z A w ) <-> ( z A y /\ z A w ) ) ) |
| 13 | 12 | imbi1d | |- ( x = z -> ( ( ( x A y /\ z A w ) -> y = w ) <-> ( ( z A y /\ z A w ) -> y = w ) ) ) |
| 14 | 13 | equsalvw | |- ( A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> ( ( z A y /\ z A w ) -> y = w ) ) |
| 15 | 14 | albii | |- ( A. y A. x ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y ( ( z A y /\ z A w ) -> y = w ) ) |
| 16 | 10 15 | bitri | |- ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) <-> A. y ( ( z A y /\ z A w ) -> y = w ) ) |
| 17 | breq2 | |- ( y = w -> ( x A y <-> x A w ) ) |
|
| 18 | 17 | anbi1d | |- ( y = w -> ( ( x A y /\ z A w ) <-> ( x A w /\ z A w ) ) ) |
| 19 | 18 | imbi1d | |- ( y = w -> ( ( ( x A y /\ z A w ) -> x = z ) <-> ( ( x A w /\ z A w ) -> x = z ) ) ) |
| 20 | 19 | equsalvw | |- ( A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) <-> ( ( x A w /\ z A w ) -> x = z ) ) |
| 21 | 20 | albii | |- ( A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) <-> A. x ( ( x A w /\ z A w ) -> x = z ) ) |
| 22 | 16 21 | anbi12i | |- ( ( A. x A. y ( x = z -> ( ( x A y /\ z A w ) -> y = w ) ) /\ A. x A. y ( y = w -> ( ( x A y /\ z A w ) -> x = z ) ) ) <-> ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
| 23 | 8 9 22 | 3bitri | |- ( A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
| 24 | 23 | 2albii | |- ( A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. z A. w ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
| 25 | 19.26-2 | |- ( A. z A. w ( A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. x ( ( x A w /\ z A w ) -> x = z ) ) <-> ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
|
| 26 | 24 25 | bitr2i | |- ( ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) <-> A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |
| 27 | fun2cnv | |- ( Fun `' `' A <-> A. z E* y z A y ) |
|
| 28 | breq2 | |- ( y = w -> ( z A y <-> z A w ) ) |
|
| 29 | 28 | mo4 | |- ( E* y z A y <-> A. y A. w ( ( z A y /\ z A w ) -> y = w ) ) |
| 30 | 29 | albii | |- ( A. z E* y z A y <-> A. z A. y A. w ( ( z A y /\ z A w ) -> y = w ) ) |
| 31 | alcom | |- ( A. y A. w ( ( z A y /\ z A w ) -> y = w ) <-> A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
|
| 32 | 31 | albii | |- ( A. z A. y A. w ( ( z A y /\ z A w ) -> y = w ) <-> A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
| 33 | 27 30 32 | 3bitri | |- ( Fun `' `' A <-> A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) ) |
| 34 | funcnv2 | |- ( Fun `' A <-> A. w E* x x A w ) |
|
| 35 | breq1 | |- ( x = z -> ( x A w <-> z A w ) ) |
|
| 36 | 35 | mo4 | |- ( E* x x A w <-> A. x A. z ( ( x A w /\ z A w ) -> x = z ) ) |
| 37 | 36 | albii | |- ( A. w E* x x A w <-> A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) ) |
| 38 | alcom | |- ( A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. x ( ( x A w /\ z A w ) -> x = z ) ) |
|
| 39 | 38 | albii | |- ( A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. w A. z A. x ( ( x A w /\ z A w ) -> x = z ) ) |
| 40 | alcom | |- ( A. w A. z A. x ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
|
| 41 | 39 40 | bitri | |- ( A. w A. x A. z ( ( x A w /\ z A w ) -> x = z ) <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
| 42 | 34 37 41 | 3bitri | |- ( Fun `' A <-> A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) |
| 43 | 33 42 | anbi12i | |- ( ( Fun `' `' A /\ Fun `' A ) <-> ( A. z A. w A. y ( ( z A y /\ z A w ) -> y = w ) /\ A. z A. w A. x ( ( x A w /\ z A w ) -> x = z ) ) ) |
| 44 | alrot4 | |- ( A. x A. y A. z A. w ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) <-> A. z A. w A. x A. y ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |
|
| 45 | 26 43 44 | 3bitr4i | |- ( ( Fun `' `' A /\ Fun `' A ) <-> A. x A. y A. z A. w ( ( x A y /\ z A w ) -> ( x = z <-> y = w ) ) ) |