This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of TakeutiZaring p. 23, who use the notation "Un(A)" for single-valued. Note that A is not necessarily a function. (Contributed by NM, 13-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun2cnv | ⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnv2 | ⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑦 ◡ 𝐴 𝑥 ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 2 3 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑦 ) |
| 5 | 4 | mobii | ⊢ ( ∃* 𝑦 𝑦 ◡ 𝐴 𝑥 ↔ ∃* 𝑦 𝑥 𝐴 𝑦 ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑦 ◡ 𝐴 𝑥 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
| 7 | 1 6 | bitri | ⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |