This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.26 with two quantifiers. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| 3 | 19.26 | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |