This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppcor.0 | |- ( ph -> .0. e. W ) |
|
| fsuppcor.z | |- ( ph -> Z e. B ) |
||
| fsuppcor.f | |- ( ph -> F : A --> C ) |
||
| fsuppcor.g | |- ( ph -> G : B --> D ) |
||
| fsuppcor.s | |- ( ph -> C C_ B ) |
||
| fsuppcor.a | |- ( ph -> A e. U ) |
||
| fsuppcor.b | |- ( ph -> B e. V ) |
||
| fsuppcor.n | |- ( ph -> F finSupp Z ) |
||
| fsuppcor.i | |- ( ph -> ( G ` Z ) = .0. ) |
||
| Assertion | fsuppcor | |- ( ph -> ( G o. F ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcor.0 | |- ( ph -> .0. e. W ) |
|
| 2 | fsuppcor.z | |- ( ph -> Z e. B ) |
|
| 3 | fsuppcor.f | |- ( ph -> F : A --> C ) |
|
| 4 | fsuppcor.g | |- ( ph -> G : B --> D ) |
|
| 5 | fsuppcor.s | |- ( ph -> C C_ B ) |
|
| 6 | fsuppcor.a | |- ( ph -> A e. U ) |
|
| 7 | fsuppcor.b | |- ( ph -> B e. V ) |
|
| 8 | fsuppcor.n | |- ( ph -> F finSupp Z ) |
|
| 9 | fsuppcor.i | |- ( ph -> ( G ` Z ) = .0. ) |
|
| 10 | 4 | ffund | |- ( ph -> Fun G ) |
| 11 | 3 | ffund | |- ( ph -> Fun F ) |
| 12 | funco | |- ( ( Fun G /\ Fun F ) -> Fun ( G o. F ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ph -> Fun ( G o. F ) ) |
| 14 | 8 | fsuppimpd | |- ( ph -> ( F supp Z ) e. Fin ) |
| 15 | 4 5 | fssresd | |- ( ph -> ( G |` C ) : C --> D ) |
| 16 | fco2 | |- ( ( ( G |` C ) : C --> D /\ F : A --> C ) -> ( G o. F ) : A --> D ) |
|
| 17 | 15 3 16 | syl2anc | |- ( ph -> ( G o. F ) : A --> D ) |
| 18 | eldifi | |- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
|
| 19 | fvco3 | |- ( ( F : A --> C /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
|
| 20 | 3 18 19 | syl2an | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 21 | ssidd | |- ( ph -> ( F supp Z ) C_ ( F supp Z ) ) |
|
| 22 | 3 21 6 2 | suppssr | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
| 23 | 22 | fveq2d | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` ( F ` x ) ) = ( G ` Z ) ) |
| 24 | 9 | adantr | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` Z ) = .0. ) |
| 25 | 20 23 24 | 3eqtrd | |- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = .0. ) |
| 26 | 17 25 | suppss | |- ( ph -> ( ( G o. F ) supp .0. ) C_ ( F supp Z ) ) |
| 27 | 14 26 | ssfid | |- ( ph -> ( ( G o. F ) supp .0. ) e. Fin ) |
| 28 | 4 7 | fexd | |- ( ph -> G e. _V ) |
| 29 | 3 6 | fexd | |- ( ph -> F e. _V ) |
| 30 | coexg | |- ( ( G e. _V /\ F e. _V ) -> ( G o. F ) e. _V ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ph -> ( G o. F ) e. _V ) |
| 32 | isfsupp | |- ( ( ( G o. F ) e. _V /\ .0. e. W ) -> ( ( G o. F ) finSupp .0. <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp .0. ) e. Fin ) ) ) |
|
| 33 | 31 1 32 | syl2anc | |- ( ph -> ( ( G o. F ) finSupp .0. <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp .0. ) e. Fin ) ) ) |
| 34 | 13 27 33 | mpbir2and | |- ( ph -> ( G o. F ) finSupp .0. ) |