This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sumss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| sumss.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | ||
| sumss.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| Assertion | sumss | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sumss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | sumss.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | |
| 4 | sumss.4 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 7 | 1 4 | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | nfcv | ⊢ Ⅎ 𝑘 𝑚 | |
| 10 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) | |
| 11 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 | |
| 12 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) | |
| 13 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 14 | 11 12 13 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
| 15 | 10 14 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
| 16 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) ) | |
| 17 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) | |
| 19 | 17 18 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
| 21 | eqid | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 22 | 21 | fvmpt2i | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 23 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 24 | 23 | fveq2d | ⊢ ( 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( I ‘ 𝐶 ) ) |
| 25 | 22 24 | sylan9eq | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
| 26 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) | |
| 27 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) | |
| 28 | 27 | fvmpt2i | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
| 29 | 26 28 | eqtrd | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
| 31 | 25 30 | eqtr4d | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 32 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) | |
| 33 | 32 | fveq2d | ⊢ ( ¬ 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( I ‘ 0 ) ) |
| 34 | 0z | ⊢ 0 ∈ ℤ | |
| 35 | fvi | ⊢ ( 0 ∈ ℤ → ( I ‘ 0 ) = 0 ) | |
| 36 | 34 35 | ax-mp | ⊢ ( I ‘ 0 ) = 0 |
| 37 | 33 36 | eqtrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = 0 ) |
| 38 | 22 37 | sylan9eq | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = 0 ) |
| 39 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
| 41 | 38 40 | eqtr4d | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 42 | 31 41 | pm2.61dan | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 43 | 9 15 20 42 | vtoclgaf | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 45 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 47 | 46 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 48 | 5 6 8 44 47 | zsum | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 49 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 50 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 51 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐵 | |
| 52 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) | |
| 53 | 51 52 13 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
| 54 | 10 53 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
| 55 | 50 54 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 56 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵 ) ) | |
| 57 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) | |
| 58 | 56 57 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 59 | 16 58 | eqeq12d | ⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
| 60 | 59 | imbi2d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) ↔ ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) ) |
| 61 | 25 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
| 62 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ⊆ 𝐵 ) |
| 63 | 62 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐵 ) |
| 64 | iftrue | ⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) ) | |
| 65 | eqid | ⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) | |
| 66 | 65 | fvmpt2i | ⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
| 67 | 64 66 | eqtrd | ⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
| 68 | 63 67 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
| 69 | 61 68 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 70 | 38 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = 0 ) |
| 71 | 67 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
| 72 | eldif | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) | |
| 73 | 3 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( I ‘ 𝐶 ) = ( I ‘ 0 ) ) |
| 74 | 0cn | ⊢ 0 ∈ ℂ | |
| 75 | fvi | ⊢ ( 0 ∈ ℂ → ( I ‘ 0 ) = 0 ) | |
| 76 | 74 75 | ax-mp | ⊢ ( I ‘ 0 ) = 0 |
| 77 | 73 76 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( I ‘ 𝐶 ) = 0 ) |
| 78 | 72 77 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → ( I ‘ 𝐶 ) = 0 ) |
| 79 | 71 78 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
| 80 | 79 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
| 81 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
| 83 | 82 | a1d | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
| 84 | 80 83 | pm2.61dan | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
| 86 | 85 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
| 87 | 70 86 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 88 | 69 87 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
| 89 | 88 | expcom | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) ) |
| 90 | 9 55 60 89 | vtoclgaf | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
| 91 | 90 | impcom | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 92 | 91 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
| 93 | 2 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 95 | 3 74 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 96 | 72 95 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 97 | 96 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 98 | 94 97 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 99 | 98 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 101 | 100 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 102 | 5 6 49 92 101 | zsum | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 103 | 48 102 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 104 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐶 | |
| 105 | sumfc | ⊢ Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐵 𝐶 | |
| 106 | 103 104 105 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 107 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
| 108 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 109 | 108 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 110 | 109 | eleq2i | ⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
| 111 | ndmfv | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) | |
| 112 | 110 111 | sylnbir | ⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 113 | 112 | sseq2d | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ 𝐵 ⊆ ∅ ) ) |
| 114 | 4 113 | imbitrid | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝜑 → 𝐵 ⊆ ∅ ) ) |
| 115 | 114 | impcom | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ∅ ) |
| 116 | 107 115 | sstrd | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
| 117 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 118 | 116 117 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = ∅ ) |
| 119 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 120 | 115 119 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 = ∅ ) |
| 121 | 118 120 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = 𝐵 ) |
| 122 | 121 | sumeq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 123 | 106 122 | pm2.61dan | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |