This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Optimized version of fsump1 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsump1i.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fsump1i.2 | ⊢ 𝑁 = ( 𝐾 + 1 ) | ||
| fsump1i.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | ||
| fsump1i.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| fsump1i.5 | ⊢ ( 𝜑 → ( 𝐾 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 𝑆 ) ) | ||
| fsump1i.6 | ⊢ ( 𝜑 → ( 𝑆 + 𝐵 ) = 𝑇 ) | ||
| Assertion | fsump1i | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsump1i.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fsump1i.2 | ⊢ 𝑁 = ( 𝐾 + 1 ) | |
| 3 | fsump1i.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | |
| 4 | fsump1i.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | fsump1i.5 | ⊢ ( 𝜑 → ( 𝐾 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 𝑆 ) ) | |
| 6 | fsump1i.6 | ⊢ ( 𝜑 → ( 𝑆 + 𝐵 ) = 𝑇 ) | |
| 7 | 5 | simpld | ⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
| 8 | 7 1 | eleqtrdi | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | peano2uz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 10 | 9 1 | eleqtrrdi | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ 𝑍 ) |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ 𝑍 ) |
| 12 | 2 11 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 13 | 2 | oveq2i | ⊢ ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 𝐾 + 1 ) ) |
| 14 | 13 | sumeq1i | ⊢ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) 𝐴 |
| 15 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 16 | 15 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 17 | 16 4 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 18 | 2 | eqeq2i | ⊢ ( 𝑘 = 𝑁 ↔ 𝑘 = ( 𝐾 + 1 ) ) |
| 19 | 18 3 | sylbir | ⊢ ( 𝑘 = ( 𝐾 + 1 ) → 𝐴 = 𝐵 ) |
| 20 | 8 17 19 | fsump1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝐾 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) ) |
| 21 | 14 20 | eqtrid | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) ) |
| 22 | 5 | simprd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 𝑆 ) |
| 23 | 22 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 + 𝐵 ) = ( 𝑆 + 𝐵 ) ) |
| 24 | 21 23 6 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 𝑇 ) |
| 25 | 12 24 | jca | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 𝑇 ) ) |