This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsers.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| fsumsers.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| fsumsers.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumsers.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | ||
| Assertion | fsumsers | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsers.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | fsumsers.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | fsumsers.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fsumsers.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 8 | fzssuz | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
| 9 | 4 8 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 5 7 9 1 3 | zsum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 11 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 12 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 13 | 11 12 | ax-mp | ⊢ Fun ⇝ |
| 14 | 1 2 3 4 | fsumcvg2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 15 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) | |
| 16 | 13 14 15 | mpsyl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 17 | 10 16 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |