This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| sumrb.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| fsumcvg.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | ||
| Assertion | fsumcvg | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | sumrb.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | fsumcvg.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 6 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 8 | seqex | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
| 10 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 14 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 16 | 15 2 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
| 18 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) | |
| 19 | 0cn | ⊢ 0 ∈ ℂ | |
| 20 | 18 19 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 21 | 17 20 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 22 | 1 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 23 | 13 21 22 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 24 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 25 | 23 24 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 26 | 10 12 25 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
| 27 | 26 3 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 28 | addrid | ⊢ ( 𝑚 ∈ ℂ → ( 𝑚 + 0 ) = 𝑚 ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ℂ ) → ( 𝑚 + 0 ) = 𝑚 ) |
| 30 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 32 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 33 | elfzuz | ⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 34 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑚 ∈ ℤ ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
| 36 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 37 | fznuz | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 38 | 36 37 | syl6 | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 39 | 38 | con2d | ⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ¬ 𝑚 ∈ 𝐴 ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ¬ 𝑚 ∈ 𝐴 ) |
| 41 | 35 40 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( ℤ ∖ 𝐴 ) ) |
| 42 | fveqeq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑚 ) = 0 ) ) | |
| 43 | eldifi | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) | |
| 44 | eldifn | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) | |
| 45 | 44 18 | syl | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 46 | 45 19 | eqeltrdi | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 47 | 43 46 22 | syl2anc | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 48 | 47 45 | eqtrd | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 49 | 42 48 | vtoclga | ⊢ ( 𝑚 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 50 | 41 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 51 | 33 50 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 0 ) |
| 53 | 29 30 31 32 52 | seqid2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 54 | 53 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 55 | 5 7 9 27 54 | climconst | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |