This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| sumrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fsumcvg.4 | |- ( ph -> A C_ ( M ... N ) ) |
||
| Assertion | fsumcvg | |- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 2 | summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | sumrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | fsumcvg.4 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 5 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 6 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 7 | 3 6 | syl | |- ( ph -> N e. ZZ ) |
| 8 | seqex | |- seq M ( + , F ) e. _V |
|
| 9 | 8 | a1i | |- ( ph -> seq M ( + , F ) e. _V ) |
| 10 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 3 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 14 | iftrue | |- ( k e. A -> if ( k e. A , B , 0 ) = B ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) = B ) |
| 16 | 15 2 | eqeltrd | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 17 | 16 | ex | |- ( ph -> ( k e. A -> if ( k e. A , B , 0 ) e. CC ) ) |
| 18 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 0 ) = 0 ) |
|
| 19 | 0cn | |- 0 e. CC |
|
| 20 | 18 19 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 0 ) e. CC ) |
| 21 | 17 20 | pm2.61d1 | |- ( ph -> if ( k e. A , B , 0 ) e. CC ) |
| 22 | 1 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 0 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 23 | 13 21 22 | syl2anr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 24 | 21 | adantr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> if ( k e. A , B , 0 ) e. CC ) |
| 25 | 23 24 | eqeltrd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 26 | 10 12 25 | serf | |- ( ph -> seq M ( + , F ) : ( ZZ>= ` M ) --> CC ) |
| 27 | 26 3 | ffvelcdmd | |- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
| 28 | addrid | |- ( m e. CC -> ( m + 0 ) = m ) |
|
| 29 | 28 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. CC ) -> ( m + 0 ) = m ) |
| 30 | 3 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
| 31 | simpr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
|
| 32 | 27 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
| 33 | elfzuz | |- ( m e. ( ( N + 1 ) ... n ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 34 | eluzelz | |- ( m e. ( ZZ>= ` ( N + 1 ) ) -> m e. ZZ ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ZZ ) |
| 36 | 4 | sseld | |- ( ph -> ( m e. A -> m e. ( M ... N ) ) ) |
| 37 | fznuz | |- ( m e. ( M ... N ) -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 38 | 36 37 | syl6 | |- ( ph -> ( m e. A -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 39 | 38 | con2d | |- ( ph -> ( m e. ( ZZ>= ` ( N + 1 ) ) -> -. m e. A ) ) |
| 40 | 39 | imp | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> -. m e. A ) |
| 41 | 35 40 | eldifd | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ( ZZ \ A ) ) |
| 42 | fveqeq2 | |- ( k = m -> ( ( F ` k ) = 0 <-> ( F ` m ) = 0 ) ) |
|
| 43 | eldifi | |- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
|
| 44 | eldifn | |- ( k e. ( ZZ \ A ) -> -. k e. A ) |
|
| 45 | 44 18 | syl | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) = 0 ) |
| 46 | 45 19 | eqeltrdi | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 47 | 43 46 22 | syl2anc | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 48 | 47 45 | eqtrd | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = 0 ) |
| 49 | 42 48 | vtoclga | |- ( m e. ( ZZ \ A ) -> ( F ` m ) = 0 ) |
| 50 | 41 49 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` m ) = 0 ) |
| 51 | 33 50 | sylan2 | |- ( ( ph /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
| 52 | 51 | adantlr | |- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
| 53 | 29 30 31 32 52 | seqid2 | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) = ( seq M ( + , F ) ` n ) ) |
| 54 | 53 | eqcomd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` N ) ) |
| 55 | 5 7 9 27 54 | climconst | |- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |