This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013) (Revised by Mario Carneiro, 24-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ¬ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ≤ 𝑁 ) | |
| 2 | elfzel2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | eluzp1l | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 < 𝐾 ) | |
| 4 | 3 | ex | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑁 < 𝐾 ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑁 < 𝐾 ) ) |
| 6 | elfzelz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 7 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 8 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 9 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁 ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁 ) ) |
| 11 | 2 6 10 | syl2anc | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁 ) ) |
| 12 | 5 11 | sylibd | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ¬ 𝐾 ≤ 𝑁 ) ) |
| 13 | 1 12 | mt2d | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ¬ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |