This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar in order to build compound functions such as ( x e. ( 0 [,) +oo ) |-> ( ( sqrtx ) + ( sinx ) ) ) . (Contributed by NM, 17-Sep-2007) Replace use of dfid2 with df-id . (Revised by BJ, 31-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsplit | ⊢ ◡ ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | brcnv | ⊢ ( 𝑥 ◡ ( 1st ↾ I ) 𝑦 ↔ 𝑦 ( 1st ↾ I ) 𝑥 ) |
| 4 | 1 | brresi | ⊢ ( 𝑦 ( 1st ↾ I ) 𝑥 ↔ ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ) |
| 5 | 19.42v | ⊢ ( ∃ 𝑧 ( ( 1st ‘ 𝑦 ) = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ ( ( 1st ‘ 𝑦 ) = 𝑥 ∧ ∃ 𝑧 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) | |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 6 6 | op1std | ⊢ ( 𝑦 = 〈 𝑧 , 𝑧 〉 → ( 1st ‘ 𝑦 ) = 𝑧 ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝑦 = 〈 𝑧 , 𝑧 〉 → ( ( 1st ‘ 𝑦 ) = 𝑥 ↔ 𝑧 = 𝑥 ) ) |
| 9 | 8 | pm5.32ri | ⊢ ( ( ( 1st ‘ 𝑦 ) = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑧 ( ( 1st ‘ 𝑦 ) = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 11 | fo1st | ⊢ 1st : V –onto→ V | |
| 12 | fofn | ⊢ ( 1st : V –onto→ V → 1st Fn V ) | |
| 13 | 11 12 | ax-mp | ⊢ 1st Fn V |
| 14 | fnbrfvb | ⊢ ( ( 1st Fn V ∧ 𝑦 ∈ V ) → ( ( 1st ‘ 𝑦 ) = 𝑥 ↔ 𝑦 1st 𝑥 ) ) | |
| 15 | 13 2 14 | mp2an | ⊢ ( ( 1st ‘ 𝑦 ) = 𝑥 ↔ 𝑦 1st 𝑥 ) |
| 16 | df-id | ⊢ I = { 〈 𝑧 , 𝑡 〉 ∣ 𝑧 = 𝑡 } | |
| 17 | 16 | eleq2i | ⊢ ( 𝑦 ∈ I ↔ 𝑦 ∈ { 〈 𝑧 , 𝑡 〉 ∣ 𝑧 = 𝑡 } ) |
| 18 | elopab | ⊢ ( 𝑦 ∈ { 〈 𝑧 , 𝑡 〉 ∣ 𝑧 = 𝑡 } ↔ ∃ 𝑧 ∃ 𝑡 ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ) | |
| 19 | ancom | ⊢ ( ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ↔ ( 𝑧 = 𝑡 ∧ 𝑦 = 〈 𝑧 , 𝑡 〉 ) ) | |
| 20 | equcom | ⊢ ( 𝑧 = 𝑡 ↔ 𝑡 = 𝑧 ) | |
| 21 | 20 | anbi1i | ⊢ ( ( 𝑧 = 𝑡 ∧ 𝑦 = 〈 𝑧 , 𝑡 〉 ) ↔ ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑡 〉 ) ) |
| 22 | opeq2 | ⊢ ( 𝑡 = 𝑧 → 〈 𝑧 , 𝑡 〉 = 〈 𝑧 , 𝑧 〉 ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑦 = 〈 𝑧 , 𝑡 〉 ↔ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 24 | 23 | pm5.32i | ⊢ ( ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑡 〉 ) ↔ ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 25 | 19 21 24 | 3bitri | ⊢ ( ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ↔ ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 26 | 25 | exbii | ⊢ ( ∃ 𝑡 ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ↔ ∃ 𝑡 ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 27 | biidd | ⊢ ( 𝑡 = 𝑧 → ( 𝑦 = 〈 𝑧 , 𝑧 〉 ↔ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) | |
| 28 | 27 | equsexvw | ⊢ ( ∃ 𝑡 ( 𝑡 = 𝑧 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ 𝑦 = 〈 𝑧 , 𝑧 〉 ) |
| 29 | 26 28 | bitri | ⊢ ( ∃ 𝑡 ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ↔ 𝑦 = 〈 𝑧 , 𝑧 〉 ) |
| 30 | 29 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑡 ( 𝑦 = 〈 𝑧 , 𝑡 〉 ∧ 𝑧 = 𝑡 ) ↔ ∃ 𝑧 𝑦 = 〈 𝑧 , 𝑧 〉 ) |
| 31 | 17 18 30 | 3bitrri | ⊢ ( ∃ 𝑧 𝑦 = 〈 𝑧 , 𝑧 〉 ↔ 𝑦 ∈ I ) |
| 32 | 15 31 | anbi12ci | ⊢ ( ( ( 1st ‘ 𝑦 ) = 𝑥 ∧ ∃ 𝑧 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ) |
| 33 | 5 10 32 | 3bitr3ri | ⊢ ( ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ) |
| 34 | id | ⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) | |
| 35 | 34 34 | opeq12d | ⊢ ( 𝑧 = 𝑥 → 〈 𝑧 , 𝑧 〉 = 〈 𝑥 , 𝑥 〉 ) |
| 36 | 35 | eqeq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 = 〈 𝑧 , 𝑧 〉 ↔ 𝑦 = 〈 𝑥 , 𝑥 〉 ) ) |
| 37 | 36 | equsexvw | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑦 = 〈 𝑧 , 𝑧 〉 ) ↔ 𝑦 = 〈 𝑥 , 𝑥 〉 ) |
| 38 | 33 37 | bitri | ⊢ ( ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ↔ 𝑦 = 〈 𝑥 , 𝑥 〉 ) |
| 39 | 3 4 38 | 3bitri | ⊢ ( 𝑥 ◡ ( 1st ↾ I ) 𝑦 ↔ 𝑦 = 〈 𝑥 , 𝑥 〉 ) |
| 40 | 39 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ◡ ( 1st ↾ I ) 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 〈 𝑥 , 𝑥 〉 } |
| 41 | relcnv | ⊢ Rel ◡ ( 1st ↾ I ) | |
| 42 | dfrel4v | ⊢ ( Rel ◡ ( 1st ↾ I ) ↔ ◡ ( 1st ↾ I ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ◡ ( 1st ↾ I ) 𝑦 } ) | |
| 43 | 41 42 | mpbi | ⊢ ◡ ( 1st ↾ I ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ◡ ( 1st ↾ I ) 𝑦 } |
| 44 | mptv | ⊢ ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 〈 𝑥 , 𝑥 〉 } | |
| 45 | 40 43 44 | 3eqtr4i | ⊢ ◡ ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) |