This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar in order to build compound functions such as ( x e. ( 0 [,) +oo ) |-> ( ( sqrtx ) + ( sinx ) ) ) . (Contributed by NM, 17-Sep-2007) Replace use of dfid2 with df-id . (Revised by BJ, 31-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsplit | |- `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | brcnv | |- ( x `' ( 1st |` _I ) y <-> y ( 1st |` _I ) x ) |
| 4 | 1 | brresi | |- ( y ( 1st |` _I ) x <-> ( y e. _I /\ y 1st x ) ) |
| 5 | 19.42v | |- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) ) |
|
| 6 | vex | |- z e. _V |
|
| 7 | 6 6 | op1std | |- ( y = <. z , z >. -> ( 1st ` y ) = z ) |
| 8 | 7 | eqeq1d | |- ( y = <. z , z >. -> ( ( 1st ` y ) = x <-> z = x ) ) |
| 9 | 8 | pm5.32ri | |- ( ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( z = x /\ y = <. z , z >. ) ) |
| 10 | 9 | exbii | |- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
| 11 | fo1st | |- 1st : _V -onto-> _V |
|
| 12 | fofn | |- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
|
| 13 | 11 12 | ax-mp | |- 1st Fn _V |
| 14 | fnbrfvb | |- ( ( 1st Fn _V /\ y e. _V ) -> ( ( 1st ` y ) = x <-> y 1st x ) ) |
|
| 15 | 13 2 14 | mp2an | |- ( ( 1st ` y ) = x <-> y 1st x ) |
| 16 | df-id | |- _I = { <. z , t >. | z = t } |
|
| 17 | 16 | eleq2i | |- ( y e. _I <-> y e. { <. z , t >. | z = t } ) |
| 18 | elopab | |- ( y e. { <. z , t >. | z = t } <-> E. z E. t ( y = <. z , t >. /\ z = t ) ) |
|
| 19 | ancom | |- ( ( y = <. z , t >. /\ z = t ) <-> ( z = t /\ y = <. z , t >. ) ) |
|
| 20 | equcom | |- ( z = t <-> t = z ) |
|
| 21 | 20 | anbi1i | |- ( ( z = t /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , t >. ) ) |
| 22 | opeq2 | |- ( t = z -> <. z , t >. = <. z , z >. ) |
|
| 23 | 22 | eqeq2d | |- ( t = z -> ( y = <. z , t >. <-> y = <. z , z >. ) ) |
| 24 | 23 | pm5.32i | |- ( ( t = z /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , z >. ) ) |
| 25 | 19 21 24 | 3bitri | |- ( ( y = <. z , t >. /\ z = t ) <-> ( t = z /\ y = <. z , z >. ) ) |
| 26 | 25 | exbii | |- ( E. t ( y = <. z , t >. /\ z = t ) <-> E. t ( t = z /\ y = <. z , z >. ) ) |
| 27 | biidd | |- ( t = z -> ( y = <. z , z >. <-> y = <. z , z >. ) ) |
|
| 28 | 27 | equsexvw | |- ( E. t ( t = z /\ y = <. z , z >. ) <-> y = <. z , z >. ) |
| 29 | 26 28 | bitri | |- ( E. t ( y = <. z , t >. /\ z = t ) <-> y = <. z , z >. ) |
| 30 | 29 | exbii | |- ( E. z E. t ( y = <. z , t >. /\ z = t ) <-> E. z y = <. z , z >. ) |
| 31 | 17 18 30 | 3bitrri | |- ( E. z y = <. z , z >. <-> y e. _I ) |
| 32 | 15 31 | anbi12ci | |- ( ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) <-> ( y e. _I /\ y 1st x ) ) |
| 33 | 5 10 32 | 3bitr3ri | |- ( ( y e. _I /\ y 1st x ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
| 34 | id | |- ( z = x -> z = x ) |
|
| 35 | 34 34 | opeq12d | |- ( z = x -> <. z , z >. = <. x , x >. ) |
| 36 | 35 | eqeq2d | |- ( z = x -> ( y = <. z , z >. <-> y = <. x , x >. ) ) |
| 37 | 36 | equsexvw | |- ( E. z ( z = x /\ y = <. z , z >. ) <-> y = <. x , x >. ) |
| 38 | 33 37 | bitri | |- ( ( y e. _I /\ y 1st x ) <-> y = <. x , x >. ) |
| 39 | 3 4 38 | 3bitri | |- ( x `' ( 1st |` _I ) y <-> y = <. x , x >. ) |
| 40 | 39 | opabbii | |- { <. x , y >. | x `' ( 1st |` _I ) y } = { <. x , y >. | y = <. x , x >. } |
| 41 | relcnv | |- Rel `' ( 1st |` _I ) |
|
| 42 | dfrel4v | |- ( Rel `' ( 1st |` _I ) <-> `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } ) |
|
| 43 | 41 42 | mpbi | |- `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } |
| 44 | mptv | |- ( x e. _V |-> <. x , x >. ) = { <. x , y >. | y = <. x , x >. } |
|
| 45 | 40 43 44 | 3eqtr4i | |- `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |