This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Merge two functions with a common argument in parallel. Combination of fsplit and fpar . (Contributed by AV, 3-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsplitfpar.h | ⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) | |
| fsplitfpar.s | ⊢ 𝑆 = ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) | ||
| Assertion | fsplitfpar | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsplitfpar.h | ⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) | |
| 2 | fsplitfpar.s | ⊢ 𝑆 = ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) | |
| 3 | fsplit | ⊢ ◡ ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) | |
| 4 | 3 | reseq1i | ⊢ ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) |
| 5 | 2 4 | eqtri | ⊢ 𝑆 = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) |
| 6 | 5 | fveq1i | ⊢ ( 𝑆 ‘ 𝑎 ) = ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) |
| 7 | 6 | a1i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) = ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 8 | fvres | ⊢ ( 𝑎 ∈ 𝐴 → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ‘ 𝑎 ) ) | |
| 9 | eqidd | ⊢ ( 𝑎 ∈ 𝐴 → ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) | |
| 11 | 10 10 | opeq12d | ⊢ ( 𝑥 = 𝑎 → 〈 𝑥 , 𝑥 〉 = 〈 𝑎 , 𝑎 〉 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 = 𝑎 ) → 〈 𝑥 , 𝑥 〉 = 〈 𝑎 , 𝑎 〉 ) |
| 13 | elex | ⊢ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ V ) | |
| 14 | opex | ⊢ 〈 𝑎 , 𝑎 〉 ∈ V | |
| 15 | 14 | a1i | ⊢ ( 𝑎 ∈ 𝐴 → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 16 | 9 12 13 15 | fvmptd | ⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 17 | 8 16 | eqtrd | ⊢ ( 𝑎 ∈ 𝐴 → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 19 | 7 18 | eqtrd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) = ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) ) |
| 21 | df-ov | ⊢ ( 𝑎 𝐻 𝑎 ) = ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) | |
| 22 | 1 | fpar | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
| 24 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 26 | fveq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑎 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑎 ) ) |
| 28 | 25 27 | opeq12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 29 | 28 | adantl | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 30 | simpr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 31 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ V | |
| 32 | 31 | a1i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ V ) |
| 33 | 23 29 30 30 32 | ovmpod | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 𝐻 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 34 | 21 33 | eqtr3id | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 35 | 20 34 | eqtrd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 36 | eqid | ⊢ ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) = ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) | |
| 37 | 36 | fnmpt | ⊢ ( ∀ 𝑎 ∈ V 〈 𝑎 , 𝑎 〉 ∈ V → ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ) |
| 38 | 14 | a1i | ⊢ ( 𝑎 ∈ V → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 39 | 37 38 | mprg | ⊢ ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V |
| 40 | ssv | ⊢ 𝐴 ⊆ V | |
| 41 | fnssres | ⊢ ( ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ∧ 𝐴 ⊆ V ) → ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) | |
| 42 | 39 40 41 | mp2an | ⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 |
| 43 | fsplit | ⊢ ◡ ( 1st ↾ I ) = ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) | |
| 44 | 43 | reseq1i | ⊢ ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) = ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 45 | 2 44 | eqtri | ⊢ 𝑆 = ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 46 | 45 | fneq1i | ⊢ ( 𝑆 Fn 𝐴 ↔ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 47 | 42 46 | mpbir | ⊢ 𝑆 Fn 𝐴 |
| 48 | 47 | a1i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝑆 Fn 𝐴 ) |
| 49 | fvco2 | ⊢ ( ( 𝑆 Fn 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) | |
| 50 | 48 49 | sylan | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) |
| 51 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑎 ) ) | |
| 52 | 24 51 | opeq12d | ⊢ ( 𝑥 = 𝑎 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 53 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) | |
| 54 | 52 53 31 | fvmpt | ⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 55 | 54 | adantl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 56 | 35 50 55 | 3eqtr4d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) |
| 57 | 56 | ralrimiva | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) |
| 58 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V | |
| 59 | 58 | a1i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V ) |
| 60 | 59 | ralrimivva | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V ) |
| 61 | eqid | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) | |
| 62 | 61 | fnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) |
| 63 | 60 62 | syl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) |
| 64 | 22 | fneq1d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 Fn ( 𝐴 × 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) ) |
| 65 | 63 64 | mpbird | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝐻 Fn ( 𝐴 × 𝐴 ) ) |
| 66 | 14 | a1i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ V ) → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑎 ∈ V 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 68 | 67 37 | syl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ) |
| 69 | 68 40 41 | sylancl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 70 | 69 46 | sylibr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝑆 Fn 𝐴 ) |
| 71 | 45 | rneqi | ⊢ ran 𝑆 = ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 72 | mptima | ⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) “ 𝐴 ) = ran ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) | |
| 73 | df-ima | ⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) “ 𝐴 ) = ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) | |
| 74 | eqid | ⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) = ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) | |
| 75 | 74 | rnmpt | ⊢ ran ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 76 | 72 73 75 | 3eqtr3i | ⊢ ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 77 | 71 76 | eqtri | ⊢ ran 𝑆 = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 78 | elinel2 | ⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 79 | simpl | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 𝑎 ∈ 𝐴 ) | |
| 80 | 79 79 | opelxpd | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 81 | eleq1 | ⊢ ( 𝑝 = 〈 𝑎 , 𝑎 〉 → ( 𝑝 ∈ ( 𝐴 × 𝐴 ) ↔ 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → ( 𝑝 ∈ ( 𝐴 × 𝐴 ) ↔ 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 83 | 80 82 | mpbird | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
| 84 | 83 | ex | ⊢ ( 𝑎 ∈ 𝐴 → ( 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 85 | 78 84 | syl | ⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) → ( 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 86 | 85 | rexlimiv | ⊢ ( ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
| 87 | 86 | abssi | ⊢ { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } ⊆ ( 𝐴 × 𝐴 ) |
| 88 | 87 | a1i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } ⊆ ( 𝐴 × 𝐴 ) ) |
| 89 | 77 88 | eqsstrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ran 𝑆 ⊆ ( 𝐴 × 𝐴 ) ) |
| 90 | fnco | ⊢ ( ( 𝐻 Fn ( 𝐴 × 𝐴 ) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ) | |
| 91 | 65 70 89 90 | syl3anc | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ) |
| 92 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V | |
| 93 | 92 | a1i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V ) |
| 94 | 93 | ralrimiva | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V ) |
| 95 | 53 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 96 | 94 95 | syl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 97 | eqfnfv | ⊢ ( ( ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ↔ ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) | |
| 98 | 91 96 97 | syl2anc | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ↔ ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) |
| 99 | 57 98 | mpbird | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |