This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fseqenlem.a | |- ( ph -> A e. V ) |
|
| fseqenlem.b | |- ( ph -> B e. A ) |
||
| fseqenlem.f | |- ( ph -> F : ( A X. A ) -1-1-onto-> A ) |
||
| fseqenlem.g | |- G = seqom ( ( n e. _V , f e. _V |-> ( x e. ( A ^m suc n ) |-> ( ( f ` ( x |` n ) ) F ( x ` n ) ) ) ) , { <. (/) , B >. } ) |
||
| fseqenlem.k | |- K = ( y e. U_ k e. _om ( A ^m k ) |-> <. dom y , ( ( G ` dom y ) ` y ) >. ) |
||
| Assertion | fseqenlem2 | |- ( ph -> K : U_ k e. _om ( A ^m k ) -1-1-> ( _om X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fseqenlem.a | |- ( ph -> A e. V ) |
|
| 2 | fseqenlem.b | |- ( ph -> B e. A ) |
|
| 3 | fseqenlem.f | |- ( ph -> F : ( A X. A ) -1-1-onto-> A ) |
|
| 4 | fseqenlem.g | |- G = seqom ( ( n e. _V , f e. _V |-> ( x e. ( A ^m suc n ) |-> ( ( f ` ( x |` n ) ) F ( x ` n ) ) ) ) , { <. (/) , B >. } ) |
|
| 5 | fseqenlem.k | |- K = ( y e. U_ k e. _om ( A ^m k ) |-> <. dom y , ( ( G ` dom y ) ` y ) >. ) |
|
| 6 | eliun | |- ( y e. U_ k e. _om ( A ^m k ) <-> E. k e. _om y e. ( A ^m k ) ) |
|
| 7 | elmapi | |- ( y e. ( A ^m k ) -> y : k --> A ) |
|
| 8 | 7 | ad2antll | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> y : k --> A ) |
| 9 | 8 | fdmd | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> dom y = k ) |
| 10 | simprl | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> k e. _om ) |
|
| 11 | 9 10 | eqeltrd | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> dom y e. _om ) |
| 12 | 9 | fveq2d | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` dom y ) = ( G ` k ) ) |
| 13 | 12 | fveq1d | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` dom y ) ` y ) = ( ( G ` k ) ` y ) ) |
| 14 | 1 2 3 4 | fseqenlem1 | |- ( ( ph /\ k e. _om ) -> ( G ` k ) : ( A ^m k ) -1-1-> A ) |
| 15 | 14 | adantrr | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` k ) : ( A ^m k ) -1-1-> A ) |
| 16 | f1f | |- ( ( G ` k ) : ( A ^m k ) -1-1-> A -> ( G ` k ) : ( A ^m k ) --> A ) |
|
| 17 | 15 16 | syl | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` k ) : ( A ^m k ) --> A ) |
| 18 | simprr | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> y e. ( A ^m k ) ) |
|
| 19 | 17 18 | ffvelcdmd | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` k ) ` y ) e. A ) |
| 20 | 13 19 | eqeltrd | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` dom y ) ` y ) e. A ) |
| 21 | 11 20 | opelxpd | |- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) |
| 22 | 21 | rexlimdvaa | |- ( ph -> ( E. k e. _om y e. ( A ^m k ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) ) |
| 23 | 6 22 | biimtrid | |- ( ph -> ( y e. U_ k e. _om ( A ^m k ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) ) |
| 24 | 23 | imp | |- ( ( ph /\ y e. U_ k e. _om ( A ^m k ) ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) |
| 25 | 24 5 | fmptd | |- ( ph -> K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) ) |
| 26 | ffun | |- ( K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) -> Fun K ) |
|
| 27 | funbrfv2b | |- ( Fun K -> ( z K w <-> ( z e. dom K /\ ( K ` z ) = w ) ) ) |
|
| 28 | 25 26 27 | 3syl | |- ( ph -> ( z K w <-> ( z e. dom K /\ ( K ` z ) = w ) ) ) |
| 29 | 28 | simplbda | |- ( ( ph /\ z K w ) -> ( K ` z ) = w ) |
| 30 | 28 | simprbda | |- ( ( ph /\ z K w ) -> z e. dom K ) |
| 31 | 25 | fdmd | |- ( ph -> dom K = U_ k e. _om ( A ^m k ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ z K w ) -> dom K = U_ k e. _om ( A ^m k ) ) |
| 33 | 30 32 | eleqtrd | |- ( ( ph /\ z K w ) -> z e. U_ k e. _om ( A ^m k ) ) |
| 34 | dmeq | |- ( y = z -> dom y = dom z ) |
|
| 35 | 34 | fveq2d | |- ( y = z -> ( G ` dom y ) = ( G ` dom z ) ) |
| 36 | id | |- ( y = z -> y = z ) |
|
| 37 | 35 36 | fveq12d | |- ( y = z -> ( ( G ` dom y ) ` y ) = ( ( G ` dom z ) ` z ) ) |
| 38 | 34 37 | opeq12d | |- ( y = z -> <. dom y , ( ( G ` dom y ) ` y ) >. = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
| 39 | opex | |- <. dom z , ( ( G ` dom z ) ` z ) >. e. _V |
|
| 40 | 38 5 39 | fvmpt | |- ( z e. U_ k e. _om ( A ^m k ) -> ( K ` z ) = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
| 41 | 33 40 | syl | |- ( ( ph /\ z K w ) -> ( K ` z ) = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
| 42 | 29 41 | eqtr3d | |- ( ( ph /\ z K w ) -> w = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
| 43 | 42 | fveq2d | |- ( ( ph /\ z K w ) -> ( 1st ` w ) = ( 1st ` <. dom z , ( ( G ` dom z ) ` z ) >. ) ) |
| 44 | vex | |- z e. _V |
|
| 45 | 44 | dmex | |- dom z e. _V |
| 46 | fvex | |- ( ( G ` dom z ) ` z ) e. _V |
|
| 47 | 45 46 | op1st | |- ( 1st ` <. dom z , ( ( G ` dom z ) ` z ) >. ) = dom z |
| 48 | 43 47 | eqtrdi | |- ( ( ph /\ z K w ) -> ( 1st ` w ) = dom z ) |
| 49 | 48 | fveq2d | |- ( ( ph /\ z K w ) -> ( G ` ( 1st ` w ) ) = ( G ` dom z ) ) |
| 50 | 49 | cnveqd | |- ( ( ph /\ z K w ) -> `' ( G ` ( 1st ` w ) ) = `' ( G ` dom z ) ) |
| 51 | 42 | fveq2d | |- ( ( ph /\ z K w ) -> ( 2nd ` w ) = ( 2nd ` <. dom z , ( ( G ` dom z ) ` z ) >. ) ) |
| 52 | 45 46 | op2nd | |- ( 2nd ` <. dom z , ( ( G ` dom z ) ` z ) >. ) = ( ( G ` dom z ) ` z ) |
| 53 | 51 52 | eqtrdi | |- ( ( ph /\ z K w ) -> ( 2nd ` w ) = ( ( G ` dom z ) ` z ) ) |
| 54 | 50 53 | fveq12d | |- ( ( ph /\ z K w ) -> ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) = ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) ) |
| 55 | eliun | |- ( z e. U_ k e. _om ( A ^m k ) <-> E. k e. _om z e. ( A ^m k ) ) |
|
| 56 | elmapi | |- ( z e. ( A ^m k ) -> z : k --> A ) |
|
| 57 | 56 | adantl | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z : k --> A ) |
| 58 | 57 | fdmd | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> dom z = k ) |
| 59 | simpl | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> k e. _om ) |
|
| 60 | 58 59 | eqeltrd | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> dom z e. _om ) |
| 61 | simpr | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z e. ( A ^m k ) ) |
|
| 62 | 58 | oveq2d | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> ( A ^m dom z ) = ( A ^m k ) ) |
| 63 | 61 62 | eleqtrrd | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z e. ( A ^m dom z ) ) |
| 64 | 60 63 | jca | |- ( ( k e. _om /\ z e. ( A ^m k ) ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
| 65 | 64 | rexlimiva | |- ( E. k e. _om z e. ( A ^m k ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
| 66 | 55 65 | sylbi | |- ( z e. U_ k e. _om ( A ^m k ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
| 67 | 33 66 | syl | |- ( ( ph /\ z K w ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
| 68 | 67 | simpld | |- ( ( ph /\ z K w ) -> dom z e. _om ) |
| 69 | 1 2 3 4 | fseqenlem1 | |- ( ( ph /\ dom z e. _om ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-> A ) |
| 70 | 68 69 | syldan | |- ( ( ph /\ z K w ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-> A ) |
| 71 | f1f1orn | |- ( ( G ` dom z ) : ( A ^m dom z ) -1-1-> A -> ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) ) |
|
| 72 | 70 71 | syl | |- ( ( ph /\ z K w ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) ) |
| 73 | 67 | simprd | |- ( ( ph /\ z K w ) -> z e. ( A ^m dom z ) ) |
| 74 | f1ocnvfv1 | |- ( ( ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) /\ z e. ( A ^m dom z ) ) -> ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) = z ) |
|
| 75 | 72 73 74 | syl2anc | |- ( ( ph /\ z K w ) -> ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) = z ) |
| 76 | 54 75 | eqtr2d | |- ( ( ph /\ z K w ) -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) |
| 77 | 76 | ex | |- ( ph -> ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) ) |
| 78 | 77 | alrimiv | |- ( ph -> A. z ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) ) |
| 79 | mo2icl | |- ( A. z ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) -> E* z z K w ) |
|
| 80 | 78 79 | syl | |- ( ph -> E* z z K w ) |
| 81 | 80 | alrimiv | |- ( ph -> A. w E* z z K w ) |
| 82 | dff12 | |- ( K : U_ k e. _om ( A ^m k ) -1-1-> ( _om X. A ) <-> ( K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) /\ A. w E* z z K w ) ) |
|
| 83 | 25 81 82 | sylanbrc | |- ( ph -> K : U_ k e. _om ( A ^m k ) -1-1-> ( _om X. A ) ) |