This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frsn | ⊢ ( Rel 𝑅 → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 2 | fr0 | ⊢ 𝑅 Fr ∅ | |
| 3 | freq2 | ⊢ ( { 𝐴 } = ∅ → ( 𝑅 Fr { 𝐴 } ↔ 𝑅 Fr ∅ ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( { 𝐴 } = ∅ → 𝑅 Fr { 𝐴 } ) |
| 5 | 1 4 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → 𝑅 Fr { 𝐴 } ) |
| 6 | 5 | adantl | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → 𝑅 Fr { 𝐴 } ) |
| 7 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐴 ) → 𝐴 ∈ V ) | |
| 8 | 7 | stoic1a | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑅 𝐴 ) |
| 9 | 6 8 | 2thd | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 10 | 9 | ex | ⊢ ( Rel 𝑅 → ( ¬ 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) ) |
| 11 | df-fr | ⊢ ( 𝑅 Fr { 𝐴 } ↔ ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 12 | sssn | ⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) | |
| 13 | neor | ⊢ ( ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ↔ ( 𝑥 ≠ ∅ → 𝑥 = { 𝐴 } ) ) | |
| 14 | 12 13 | sylbb | ⊢ ( 𝑥 ⊆ { 𝐴 } → ( 𝑥 ≠ ∅ → 𝑥 = { 𝐴 } ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → 𝑥 = { 𝐴 } ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) → 𝑥 = { 𝐴 } ) |
| 17 | eqimss | ⊢ ( 𝑥 = { 𝐴 } → 𝑥 ⊆ { 𝐴 } ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → 𝑥 ⊆ { 𝐴 } ) |
| 19 | snnzg | ⊢ ( 𝐴 ∈ V → { 𝐴 } ≠ ∅ ) | |
| 20 | neeq1 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝑥 ≠ ∅ ↔ { 𝐴 } ≠ ∅ ) ) | |
| 21 | 19 20 | syl5ibrcom | ⊢ ( 𝐴 ∈ V → ( 𝑥 = { 𝐴 } → 𝑥 ≠ ∅ ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → 𝑥 ≠ ∅ ) |
| 23 | 18 22 | jca | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) |
| 24 | 16 23 | impbida | ⊢ ( 𝐴 ∈ V → ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ↔ 𝑥 = { 𝐴 } ) ) |
| 25 | 24 | imbi1d | ⊢ ( 𝐴 ∈ V → ( ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 26 | 25 | albidv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 27 | snex | ⊢ { 𝐴 } ∈ V | |
| 28 | raleq | ⊢ ( 𝑥 = { 𝐴 } → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) | |
| 29 | 28 | rexeqbi1dv | ⊢ ( 𝑥 = { 𝐴 } → ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
| 30 | 27 29 | ceqsalv | ⊢ ( ∀ 𝑥 ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) |
| 31 | 26 30 | bitrdi | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
| 32 | 11 31 | bitrid | ⊢ ( 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
| 33 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝐴 ) ) | |
| 34 | 33 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 𝐴 ) ) |
| 35 | 34 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ) ) |
| 36 | 35 | rexsng | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ) ) |
| 37 | breq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 𝑅 𝐴 ↔ 𝐴 𝑅 𝐴 ) ) | |
| 38 | 37 | notbid | ⊢ ( 𝑧 = 𝐴 → ( ¬ 𝑧 𝑅 𝐴 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 39 | 38 | ralsng | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 40 | 32 36 39 | 3bitrd | ⊢ ( 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 41 | 10 40 | pm2.61d2 | ⊢ ( Rel 𝑅 → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |